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a b s t r a c t

File carving is a technique whereby data files are extracted from a digital device without

the assistance of file tables or other disk meta-data. One of the primary challenges in file

carving can be found in attempting to recover files that are fragmented. In this paper,

we show how detecting the point of fragmentation of a file can benefit fragmented file

recovery. We then present a sequential hypothesis testing procedure to identify the frag-

mentation point of a file by sequentially comparing adjacent pairs of blocks from the start-

ing block of a file until the fragmentation point is reached. By utilizing serial analysis we

are able to minimize the errors in detecting the fragmentation points. The performance

results obtained from the fragmented test-sets of DFRWS 2006 and 2007 show that the

method can be effectively used in recovery of fragmented files.

ª 2008 Digital Forensic Research Workshop. Published by Elsevier Ltd. All rights reserved.

1. Introduction

With the ever increasing adoption of digital storage mediums
for both legitimate and criminal use, the need for more
sophisticated data recovery and forensic recovery products

has also increased. Most file systems and storage devices store
data by dividing it into many clusters and by maintaining the
list of clusters (file table) used for storing each file’s data.1

When a file is accessed the data is retrieved in sequence
from this list of clusters. Similarly, deletion of a file is typically
realized by removing a file’s entry from the file table. Tradi-
tional data recovery and forensics products attempt to recover
data by analyzing the file system and extracting the data
pointed to by the file system. Traditional recovery techniques
fail to recover datawhen the file system is corrupted, not pres-
ent or hasmissing entries. File carving was then introduced to
recover files from the ‘‘unallocated’’ space of a disk, i.e., the

area of the disk not pointed to by the file system. The initial
and still by far most common form of file carvers simply

analyze headers and footers of a file and attempt to merge
all the blocks in between. One of themost well known of these
file carvers is Scalpel (Richard and Roussev, 2005). However,
these file carvers still fail to recover files that are fragmented.

A file is said to be fragmentedwhen it is not stored on a con-

tinuum of clusters, and the most difficult challenge in data
carving is to recover files when they are fragmented into two
or more pieces. Garfinkel (2007) determined that fragmenta-
tion on a typical disk is less than 10%, however, the fragmen-
tation level of forensically important file types (like images,
office files, and email) is relatively high. Among his main find-
ings are that up to 42% of PST files (outlook email) 17% of MS-
Word files and 16% of JPEGs are fragmented. It is, therefore,
clear that recovery of fragmented files is a critical problem
in forensics.

While the starting and end points of a file can be identified
by specific markers (e.g., file headers and footers), the point at

which a file fragments and the point at which the next frag-
ment starts can be extremely difficult to ascertain. Identifying
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1 For example, in the file system FAT-32 the root table entry with the file name will point to the first cluster of the file, which in turn will
point to the next cluster and so on until the last cluster of the file.
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these points involves a detailed understanding of individual

file formats, and existing techniques fail to scale when dealing
with hundreds of thousands of blocks, and files that may be
fragmented into more than two fragments.

In this paper, we show how by identifying the fragmenta-
tion point of a file we can improve the performance of Garfin-
kel’s (2007) bifragment gap carving technique, as well as Pal
and Memon’s (2006) Parallel Unique Path (PUP) techniques
for recovering fragmented files. We present a technique to
identify the fragmentation point(s) of a file by utilizing
sequential hypothesis test (SHT) procedure. The technique
begins with a header block identifying the start of a file and

then attempts to validate via SHT each subsequent block fol-
lowing the header block. The fragmentation point is identified
when SHT identifies a block as not belonging to the file. By uti-
lizing this technique, we are able to correctly and efficiently
recover JPEG images from the DFRWS 2006 (Carrier et al.,
2006) and 2007 (Carrier et al., 2007) test-sets even in the pres-
ence of tens of thousands of blocks and files fragmented into
three or more parts. The bifragment gap carving technique
enhanced with SHT allows us to improve the performance
result of DFRWS 2006 challenge test-sets, although the tech-
nique cannot be used for DFRWS 2007.We then showhowPar-

allel Unique Path enhanced with SHT is able to recover all
fragmented JPEGs from DFRWS 2006 and all recoverable JPEGs
from 2007 challenge test-sets. As far as we are aware, no other
automated technique can recover multi-fragmented JPEGs
from the DFRWS 2007 test set.

The next section begins with a description of fragmenta-
tion and how fragmentation occurs on disks. We then define
the basic terms used throughout the paper. Section 3
describes existing techniques for fragmented file recovery,
followed by Section 4 which describes our technique for frag-
mentation point detection. We then formalize the fragmenta-

tion point detection problem and describe our solution in
Section 5. Section 6 contains information about our refined
file carving systemusing Fragmentation Point Detection based
on the PUP carver. We detail our experiments and results in
Section 7 for the new file carver as well as bifragment gap
carving. We conclude with some open problems as well as
areas that we are currently looking into.

2. Fragmentation

File fragmentation is said to occur when a file is not stored in
the correct sequence on consecutive blocks on disk. In other
words if a file is fragmented, the sequence of blocks from
the start of a file to the end of the file will result in an incorrect
reconstruction of the file. Fig. 1 provides a simplified example
of a fragmented file. In the figure, the file J1 has been broken
into two fragments. The first fragment starts at block 1 and
ends at block 4. The second fragment starts at block 8 and
ends at block 9. This file is considered to be bi-fragmented

as it has only two fragments. Garfinkel (2007) showed that
bi-fragmented fragmentation is the most common type of
fragmentation, however, files fragmented into three or more
pieces are not uncommon.

Garfinkel’s fragmentation statistics come from identifying
over 350 disks containing FAT, NTFS and UFS file systems.

Fragmentation typically occurs under one of the following
scenarios:

(1) Low disk space: If the disk space is low and the disk is not
defragmented, there may be many small groups of
blocks/clusters that are available for storing information.
However, future files to be stored may be larger than the

largest of these free groups of blocks, and as a result
a file may need to be fragmented across multiple of these
blocks.

(2) Appending/editing files: If a file is saved on disk and then ad-
ditional files are also saved starting at the cluster that the
original file ended at, then fragmentation may occur if the
original file is thenappended to (and increases in size larger
than the cluster size). Some file systems like the Amiga
Smart Filesystem may attempt to move the whole file in
such scenarios. Some other file systems like UFS attempt
to provide ‘‘extents’’ which are attempts to pre-allocate
longer chunks in anticipation of appending (McVoy and

Kleiman, 1991). Another technique called delayed alloca-
tion used in file systems like XFS (Sweeney et al., 1996)
and ZFS reserve file system blocks but attempt to delay
thephysical allocation of the blocksuntil the operating sys-
tem forces a flushing of the contents. However, while some
of these techniques are able to reduce fragmentation they
are unable to eliminate fragmentation completely.

(3) Wear-leveling algorithms in next generation devices: Solid State
Devices are currently utilizing proprietary wear-leveling
algorithms to store data on the disk (STORAGEsearch.
com). If the information mapping the logical geometry of

the disk to the physical geometry is destroyed or gets cor-
rupted, then any data extracted will be fragmented, with
no easy way of determining the correct sequence of blocks
to recover files.

(4) File system: In rare cases the file system itself will force
fragmentation. The Unix File System will fragment files
that are long or have bytes at the end of the file that will
not fit into an even number of sectors (Carrier, 2005).

In Table 1, we give basic definitions concerning fragmenta-
tion that will be used throughout the paper and Fig. 1 provides

a simple visualization of these definitions.
As mentioned earlier, once a file has been fragmented, tra-

ditional file carving techniques will fail to recover the file. In
the next section, we detail the process required to recover
fragmented files and provide a description of existing tech-
niques to achieve this.

J1 ? ?J1 J1J1J1 J1?

Header Fragmentation Point

Base-fragment Fragment

641 52 83 97

Blocks

Footer

Fig. 1 – File J1 has been broken into two fragments
spanning six blocks, with three blocks in between not
belonging to J1.
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3. Fragmented file carving

To recover fragmented files correctly a file carver must be able
to determine the starting point of a file and the correct blocks
that are required to reconstruct the file. In essence it is a three
step process:

(1) Identify starting point of a file.
(2) Identify blocks belonging to file.
(3) Order the blocks correctly to reconstruct the file.

There are two published techniques that attempt to follow
this three step process in differing ways. We now describe
these two techniques.

3.1. Bifragment gap carving

Garfinkel (2007) introduced the fast object validation technique
for recovery of fragmented files. This technique recovers files
that have headers and footers and are fragmented into two
fragments (bi-fragmented). This technique works only for files
that can be validated/decoded. Decoding is the process of
transforming information in the data blocks associated with
a file into its original format that describes the actual content.

Many file types, like JPEG, MPEG, ZIP, etc., have to be decoded
before their content can be understood. Object validation is
the process of verifying if a file obeys the structured rules of
its file type. Therefore, an object validator will indicate
whether a block violates the structure or rules required of
the specific file or file type. For example in the PNG file format,

the data can be validated through cyclic redundancy checking,

and a mismatch will indicate either data corruption or frag-
mentation. A decoder can be trivially used as an object valida-
tor by observing whether or not it can correctly decode each
block in the sequence.

Bifragment Gap Carving (BGC) recovery occurs by exhaus-
tively searching all combinations of blocks between an identi-
fied header and footer while excluding different number of
blocks until a successful decoding/validation is possible. We
now describe bifragment gap carving in greater detail. Let bh
be the header block, bf be the last block of the first fragment
of a file, bs be the starting block of the second fragment, and

bz be the footer block. Blocks bh and bz are known and bf and
bs have to be determined. For each gap size g, starting with
size one, all combinations of bf and bs are designated so that
they are exactly g blocks apart, i.e., s" f¼ g. A validator/
decoder is then run on the byte stream representing blocks
bh to bf and bs to bz. If the validation fails bf and bs are read-
justed and the process continued until all choices of bf and
bs are tried for that gap size, after which the gap size is incre-
mented. This continues until a validation returns true or the
gap size can’t be increased any further. This technique per-
forms satisfactorily when the two fragments are close to

each other; however, it has the following limitations for the
more general case.

(1) The technique does not scale for files fragmented with
large gaps. If n is the number of blocks between bh and bz
then in the worst case n2 object validations may be
required before a successful recovery.

(2) For files with more than two fragments, the number of
object validations that need to be performed can be im-
practically high. This is because n" 1 gap sizes have to
be used in parallel where n is the number of fragments in

the file. It is also very highly unlikely that n can be deter-
mined before hand.

(3) Successful decoding/validation does not always imply that
a file was reconstructed correctly. Decoders will give an
error when the data in the blocks do not conform to inher-
ent decoding rules or structure. For example, standard
JPEG decoder will stop with an error when a retrieved bit
pattern has no corresponding entry in the Huffman code
table. Fig. 2 from DFRWS 2007 is an example of a success-
fully decoded but incorrect JPEG file.

(4) Many file types cannot be validated by their structure or do
not require decoding. For example, 24-bit BMPs have

a header, followed bypixel valueswhere eachpixel is repre-
sentedwith threebytes, andhasno footer. If a bitmap image
is fragmented, anyblock canbeconsidered tobea candidate
for thefragmentationpointandthestartingpointofanother
fragment. Object validation will fail in such a case.

(5) Missing or corrupted blocks for a filewill result in theworst
case often.

3.2. Graph theoretic carving

Pal and Memon (2006) formulate the image reassembly prob-
lem as a k-vertex disjoint graph problem and reassembly is
then done by finding an optimal ordering of blocks. Their

Table 1 – Definitions for terms used in paper

Term Definition

Block This is the size of the smallest data unit that can
be written to disk which can be either a disk
sector or cluster. To avoid confusion we will use
the term block and by will denote the block
numbered y in the access order.

Header This is a block that contains the starting point of
a file.

Footer This is a block that contains the ending data of
a file.

Fragment A fragment is considered to be one ormore blocks
of a file that are not sequentially connected to
other blocks of the same file. Fragmented files are
considered to have two or more fragments
(though one or more of these may not be present
on the disk anymore). Each fragment of a file is
assumed to be separated from each other by an
unknown number of blocks.

Base-fragment The starting fragment of a file that contains the
header as its first block.

Fragmentation
point

This is the last block belonging to a file before
fragmentation occurs. A file may have multiple
fragmentation points if it hasmultiple fragments.

Fragmentation
area

A set of consecutive blocks by, byþ1, byþ2, byþ3.

containing the fragmentation point.
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technique does not require object validations or decoding, but
utilizes a matching metric to indicate the likelihood that

a block follows another. For file types that can’t be validated
based on their structure (24-bit BMPs), analysis of the actual
contents of each file is required to determine if a block should
be paired with another block. However, even if a block can be
validated the contents of each block are still analyzed and
matching metrics created. Matching metrics differ according
to the file type. For example in images, the matching metric
is generated by analyzing the pixel boundary created by the
merging of two blocks.

Utilizing thematchingmetric, they present three algorithms
using two heuristics. For the purpose of this paper we describe

the Parallel Unique Path (PUP) algorithm using the greedy heu-
ristic as this has the best combination of performance and
results. PUP is amodifiedDijkstra’s (1959) single source shortest
path algorithm, used to reassemble multiple files simulta-
neously. Starting with the file headers of each file, the best
match for each header is chosen and then the header–block
pairwith thebestofall thebestmatches ismergedto theheader.
The process is repeated until all files are reconstructed.

More formally, the k file headers (bh1, bh2, . bhk) are stored
as the starting blocks in the reconstruction paths Pi for each of
the k files. A set S¼ (bs1, bs2, . , bsk) of current blocks is main-

tained for processing, where bsi is the current block for the ith
file. Initially, all the k starting header blocks are stored as the
current blocks for each file (i.e., bsi¼ bhi). The best greedy
match for each of the k starting blocks is then found and
stored in the set T¼ (bt1, bt2, ., btk) where bti represents the
best match for bsi. From the set T of best matches the block
with the overall best matching metric is chosen.

Assuming that this best block is bti, the following steps are
undertaken:

(1) Add bti to reconstruction path of ith file, (i.e., Pi¼ Pikbti).
(2) Replace current block in set S for ith file (i.e., bsi¼ bhi).
(3) Evaluate new set T of best matches for S.
(4) Again find best block bti in T.
(5) Repeat 1 until all files are built.

Fig. 3 shows an example of the algorithm where there are

three files being reconstructed. Fig. 3(a) shows the header
blocks H1, H2 and H3 of the three files and their best matches.
The best of all the matches is presented with a dotted line and
is the H2–6 pair of blocks. Fig. 3(b) now shows the new set of
best matches after block 6 has been added to the reconstruc-
tion path of H2. Now block 4 is chosen once each for blocks
H1 and 6. However, the pair H1–4 is the best and therefore 4
is added to the reconstruction path of H1 and the next best
match for block 6 is determined Fig. 3(c). This process con-
tinues until all files are reconstructed.

While the reported results are very promising, the reas-

sembly requires O(n2) computations, where n is the total num-
ber of blocks. Clearly, this system fails to scale when dealing
with tens of thousands and even millions of blocks. The rea-
son O(n2) computations are necessary is due to the assump-
tion that fragmentation occurs completely randomly and
fragment sizes can be as small as a single block. However,
since it assumes random fragmentation, it is able to handle
files fragmented into greater than two fragments. Another
problem with this technique is that it assumes all blocks are
present and that there are no holes.

3.3. The need for fragmentation point detection

Asmentioned both BGC and PUP have problems when dealing
with fragmented files. Both require O(n2) computations in the
worst case and fail to scale for very large gaps or a file frag-
mented into many pieces. PUP assumes that fragmentation is
completely random, however, as shown in Garfinkel (2007),

files with greater than three fragments are very rare, and file
systems will almost never fragment a file on a block by block
basis. BGC assumes if a file validates it is correct, and does
not attempt to validate or score individual pairs of blocks.

Fig. 2 – Fully validated but incorrect JPEG image from the
DFRWS 2007 test set.

Fig. 3 – Simplified example of PUP algorithm.
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Both techniques would benefit from being able to identify

the base-fragment, which as defined earlier, is the first frag-
ment of a file. More specifically, the last block of the base-
fragment (i.e., fragmentation point) needs to be detected.
In the case of BGC, correct fragmentation point identification
allows the assumed fragmentation ending point bf (as de-
fined earlier) to be fixed, and only bs (next fragment starting
point) adjusted, thus greatly reducing the number of compu-
tations required to validate a file. Even if the fragmentation
point was not found, but the fragmentation area was found
(a small set of blocks, one of which contains the fragmenta-
tion point), bf would only need to be adjusted within the

fragmentation area and not from the header. In the case of
PUP rather than assuming each block is randomly frag-
mented, a modification can be made so that if a block is cho-
sen to belong to a file, then the blocks following the chosen
one are sequentially compared to the previous block, until
a fragmentation point is reached, at which point the algo-
rithm will resume as normal. In the next section we present
some simple techniques that can be used for fragmentation
point detection.

4. Fragmentation point detection

In Fig. 4, a JPEG image J1 has one file fragmentation point at the
fourth block, b4. This implies that blocks 1–4 all belong
together in order. If a file is fragmented into more than two
pieces, then multiple file fragmentation points will exist,

and if the file has no fragmentation then there will be no file
fragmentation points. For a file fragmented into more than
two pieces, the techniques for identifying the starting file frag-
mentation point are no different than the techniques for iden-
tifying subsequent file fragmentation points.

Other than the rare scenario where a file is fragmented
because two or more of its fragments are swapped with each
other, the gap between each of a file’s fragment ending points
and the next correct fragment’s starting point contains data
that does not belong to the file. The following tests utilize
this information to identify the fragmentation point.

4.1. Syntactical tests

With this approach the fragmentation point is detected by
identifying whether or not a block belongs to a file in question
through one of the following methods:

$ Using keywords and signatures indicating different file types.
During recovery of a fragmented file, if a block is found to
belong to some other file or file type, then it is assumed
that a fragmentation point is reached. For example, while

recovering a JPEG file if a block is identified to be starting
with an HTML file header and has a few other HTML tags,
then the fragmentation point is deemed to be detected. Sim-
ilarly, certain keywords are not expected to be seen during
the process of recovery (like invalid JPEG markers), and
they can be used for detecting fragmentation points.

$ Content analysis indicating incorrect block. An abrupt change in
characteristics of the data might potentially indicate a frag-
mentation point. For example during the recovery of a JPEG
file if one were to encounter blocks containing English
words, this would indicate that the fragmentation has
occurred.

With this type of approach while we may say with cer-
tainty that a block does not belong to a particular file, these
methods on their own have no way of determining whether
or not the previous blocks belong to the file. In the simple
example shown in Fig. 4, a JPEG file has been fragmented
into two pieces, the first piece, numbering four blocks, and
the last piece, numbering three blocks, with three unknown
blocks in between. If the first block has the starting (header)
signature of another JPEG as shown in Fig. 4b, then this may
yield to the decision that fragmentation happened at the fifth

block and the last correct block was the fourth block. More-
over, when multiple files of the same type are fragmented
together with this approach it will be much harder to detect
the presence of fragmentation.

4.2. Statistical tests

Statistical tests attempt to compare the statistics of each block
to a model for each file type and then classify the block. Some
examples of statistical tests involve entropy of each block and
the OSCAR method (Karresand and Shahmehri, 2006a,b). The
Oscar method is based on building models, called centroids,
of the mean and standard deviation of the byte frequency dis-
tribution of different file types. A block is compared to all
models and a determination made as to which file type it
seems to conform to. Again these tests suffer from the same

problems of being unable to detect the actual fragmentation
point that the syntatical tests suffer from, but in addition,
blocks can be falsely identified as belonging to another file
type.

4.3. Basic sequential validation

Another simple technique to identify the fragmentation point
is to start validating blocks sequentially from the header and
continuing on until the validator (decoder) stopswith an error.
With this technique the last correctly validated block is

J1 ? ?J1 J1J1J1 J1?

J1 J2J1 J1J1J1 J1J2 J2

J1 ?J1 J1J1J1 J1J2 J2

1 5 62 843 97

Jpeg 1  (J1) contains two fragments (blocks 1-4 and 8-9).

Blocks 6-7 contain a second Jpeg, but block 5 is unknown.

Blocks 5-7 contain a second Jpeg (J2).

a

b

c

Fig. 4 – Three examples of different types of blocks in
between the two fragments of a JPEG J1.
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deemed to be the fragmentation point. In Fig. 4c validation

starts at the first block and continues until it fails at block
five, leading to the conclusion that fragmentation point is at
block 4.

However, it is possible for a validator to successfully vali-
date random blocks of data, which will result in an inaccurate
recovery of a file. In fact, this is quite common and is not at all
unusual. Take a look at Fig. 5, this shows four images from
DFRWS 2007 that were decoded and recovered incorrectly. In
DFRWS 2007 sequential decoding alone will result in 8 of 18
JPEGs having the fragmentation point identified incorrectly
because multiple blocks beyond the correct fragmentation

point will be validated via decoding.

5. Fragmentation point detection using
sequential hypothesis testing

The main focus of this paper is to improve on PUP and BGC
recovery techniques by assuming a more realistic fragmenta-
tion scenario where fragments are not randomly scattered but
have multiple blocks sequentially stored. However, at the
same timewe do notwant to rely on basic decoding/validation
techniques alone to determine where a fragmentation point
may occur. We begin by reliably and efficiently detecting the
fragmentation point bf and then attempt to find bs, the starting

block of the next fragment. For this purpose,we propose a gen-

eral fragmentation point detection method which is then uti-
lized as a part of a JPEG image file recovery method.

5.1. Problem formulation

Recall that we define a base-fragment to be the first fragment

of a file. It is composed of k physical data blocks that start
with an identifiable bit pattern or a header. Our objective is
to determine the total number of blocks k within a base-frag-
ment while minimizing decision errors in falsely identifying
the fragmentation point. A decision error can be in two
forms:

$ a random block that does not belong to the actual fragment
is joined, i.e., false addition; or

$ a block is separated from the fragment that it belongs to, i.e.,
false elimination.

Hence, given the beginning of a base-fragment, a binary
decision is made for each subsequent data block to determine
as to whether or not a given data block belongs to the base-
fragment. This problem can be formulated as a hypothesis
test and the corresponding analysis’ framework, based on
false-positive and false-detection probabilities, can be
extended to false-addition and false elimination probabilities.

Fig. 5 – Four images from the DFRWS 2007 test-set that are decoded incorrectly when doing sequential decoding.
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For this purpose, we define a matching metric Yi that may be

computed between the data block bi in question and already
identified parts of the base-fragment, i.e., b0;b1;.; bi"1.

In a conventional hypothesis test, for each data block
a matching metric is computed and an individual hard de-
cision is made for each block in the order they appear on
the storage medium until a fragmentation point is detected.
However, since data blocks before the fragmentation point
are more likely to be appended to the base-fragment than
blocks beyond the fragmentation point, decisions made
based on a sequence of blocks, as opposed to a single block,
will be more reliable. It should also be noted that in frag-

mentation point detection, false addition of a random block
is typically much more costly than a false elimination of
a correct block as those data blocks can be later correctly
merged in the next rounds where all the un-attributed
data blocks will be matched against successfully recon-
structed base-fragments. On the other hand, falsely merged
data blocks will not only cause an error in reconstruction of
a base-fragment but they may also curtail the correct re-
construction of other fragments (and files) due to loss of
continuity.

5.2. Forward fragment point detection test

In our sequential fragment detection method, the number of
observations Y1, Y2, Y3, ., associated with a set of blocks, is
not fixed in advance. Instead, they are evaluated collectively
as they become available and the test is ended in favor of
a decision only when the resulting decision statistic is signif-
icantly low or high. Otherwise, if the statistic is in between

these two bounds, the test is continued. Starting with the first
data block of the base-fragment b0, identified by a fixed pat-
tern or header, subsequent data blocks b1, b2, .bn are
appended to b0 and amatchingmetric, Y1, Y2,., Yn is obtained
in sequence with each addition. Accordingly, we define the
hypotheses H0 and H1 as following.

H0: blocks b1, b2, ., bn belong in sequence to fragment;
H1: blocks b1, b2, ., bn do not belong in sequence to

fragment.

If the evaluated data blocks b1, b2, ., bn do not yield to
a conclusive decision, the test continues with the inclusion
of block bnþ1 until one of the hypotheses is confirmed. When
hypothesis H0 is true, the evaluated blocks are merged to the
base-fragment and a new test is started. Each time the test
starts with a new data block in sequence, the matching statis-
tic is computed with respect to the recovered part of the base-
fragment. The test procedure finalizes after one of the
following conditions occur:

(1) H1 is achieved.
(2) File is completely recovered.

(3) An error occurs because no data-block remains or remain-
ing blocks are of a different file type.

LetY represent the sequenceY1,Y2,.,Yn, then in a sequen-
tial hypothesis test, a test statistic L is computed as the likeli-
hood ratio of observing sequenceY under the two hypotheses,

which is expressed as the ratio of the conditional distributions

of observed matching metrics under H0 and H1 as

LðYÞ ¼ PrðYjH1Þ
PrðYjH0Þ

: (1)

Finally, a decision is made by comparing L to appropriately
selected thresholds as

outcome of test ¼

8
<

:

H1; LðYÞ > sþ

H0; LðYÞ < s"
inconclusive; s" < LðYÞ < sþ

(2)

That is, if the test statistic (likelihood ratio) is larger than sþ,
we assume that hypothesis H1 is true and we have found the
fragmentation region. If, on the other hand, test statistic is
smaller than s", hypothesis H0 is true and all the fragments
are merged and the test continues from the next sequential

block. Finally, if neither cases are true testing continues until
one of the thresholds is exceeded or end-of-file indicator is
reached. The thresholds s" and sþ can be chosen so as to upper
bound the probability of errors due to false-eliminations, Pfr,
and false additions, Pfe as (Wald, 1947)

sþ ¼ 1" Pfe

Pfa
and s" ¼ Pfe

1" Pfa
: (3)

Ultimately, the success of the sequential fragment point
detection method depends on two factors. The first factor is

the choice of the matching-metric whose design has to take
into consideration different file types and to capture semantic
or syntactic characteristics of the file. The second factor is the
accurate determination of the conditional probability mass
functions under the two hypotheses. This essentially boils
down to obtaining multi-dimensional probability distribution
functions under two hypotheses. This requires access to
statistics revealing typical number of data blocks in a file frag-
ment which might depend on various parameters like disk
size, operating system, disk usage activity, etc. Lacking this
information, we assume that thematching-metrics computed

from each sequentially stored block are independent and
identically distributed (iid). It should be noted that when the
data-block locations are not necessarily sequential, iid
assumption holds. For example, when all the base-fragments
are recovered and subsequent fragment for each file have to
be identified, from among all the remaining un-associated
data blocks, such amodel fits very well. Under iid assumption,
the test statistic can be rewritten as

LðYÞhPrðYjH1Þ
PrðYjH0Þ

¼
Yn

i¼1

PrðYijH1Þ
PrðYijH0Þ

: (4)

In this case, the test statistic can be incrementally updated
with each observation through multiplication by probability
ratio associatedwith themost recently considered data-block.
The test statistic is later compared to two thresholds to

confirm a hypothesis or to continue the test.

5.3. Reverse fragmentation point detection

As noted earlier, falsely merging a data-block with or elimi-
nating it from a base-fragment will cause an error in the
recovery process. Therefore, our main goal is to determine
the fragment boundary by identifying the last data block in
sequence that belongs to the base-fragment. Although the
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above sequential fragment detection procedure provides an

advantage in avoiding false additions and false-eliminations
bynotmaking a decisionwhen the information is inconclusive,
it also makes accurate fragmentation point detection difficult.
This isbecauseeachdecision ismadeonlyafter awindowofob-
servations ismade, anda fragmentationpoint canbeanywhere
in this sequence and the test cannot accurately determine it.

To cope with this problemwe propose to conduct a reverse
sequential test every time the (forward) test is inconclusive
and the test statistic has to be updated by considering a new
data-block. Since for a given window of observations (in
a forward test) Y1, Y2, ., Yn the observations towards the

end of the block are more likely to be due to random data
blocks, by visiting them first reverse test enables more accu-
rate detection of the fragmentation point. In a reverse hypoth-
esis test, the test statistic is computed by traversing the
measured matching-metrics in reverse order, i.e., sequence
Yn, Yn"1, ., Y2. The test starts by considering Yn only. If the
test evaluatesH1 as true (bn does not belong to base-fragment),
the test is started with Yn"1, and if H1 is evaluated true the
reverse test is terminated and the forward testing continues.
On the other hand, if the reverse test is inconclusive, the
test continues by considering the next to last data blocks,

i.e., Yn, Yn"1, until a decision is reached. The fragmentation
point is deemed to be themost recently eliminated data-block
before the test finally confirms the H1 hypothesis. Fig. 6 shows
the flow diagram of the fragment point detection algorithm.

Another issue is that the recovery of the base-fragmentwill
be continued via merging new blocks to it every time the test
terminates in favor of H0. However, it must be noted that the
designated test statistics Y, by its definition, is computed
between the known parts of the base-fragment and the blocks
in question. Therefore, when both the forward and backward
tests are inconclusive and further blocks considered do not

form a boundary with the recovered part of the image, the
test has to be forcefully terminated. In this case the fragmen-
tation point is assigned to the last block that ended the test in
favor of the H0 hypothesis and the blocks that cannot be
decided are not added to the base-fragment.

Having identified the fragmentation point by itself is not
enough (unless the fragmentation point is the end of file) for
recovery. Once the base-fragment has been identified, the
starting block of the next fragment belonging to the file being
reconstructed needs to be determined. In the next section we
present a newmodel for a file carver and then present a mod-
ified version of the PUP algorithm that utilizes SHT for a com-

plete recovery solution.
It should be remembered that false eliminations (fragmen-

tation point is identified before actual identification point) are
preferable over false additions (late detection of fragmenta-
tion point), since the second step of the carving (close region
sweep, described in the next section) will look at a large num-
ber of potential fragments to determine the next block to build
the file and the falsely eliminated block will be reconsidered.

6. Refined file carving

As mentioned earlier, Garfinkel shows that files with greater
than four fragments are rare, and file systems will almost

never fragment a file on a block by block basis. What this

means is that fragments typically consist of tens if not hun-
dreds or thousands of blocks.We, therefore, propose a carving
system that takes into account the fact that fragments typi-
cally consist of multiple blocks. In essence we believe that
a file carver needs to find the fragmentation points of each
file by sequentially testing each block after the header block.
So our refined file carver will then contain the following steps:

(1) Identify starting block of file.
(2) Sequentially check each block after first and determine

fragmentation point/file end.

(3) If fragmentation point is detected, find starting point of
next fragment.

(4) Continutewith step 2 from starting point of next fragment.

The first step in the new file carving system is the same as
the traditional step for file carving – identify the data blocks
that include the file header. The information from this initial
data block is then utilized to recover the base-fragment
through analysis of the neighboring blocks until a fragmenta-
tion point is detected. Once the fragmentation point is deter-
mined the starting block of the subsequent fragment must

be determined. Using information from the file recovered so
far the next fragmentation point (if the file has more than
two fragments) has to be identified. This process is repeated
until the file is completely or partially recovered from all the
available fragments. Based on this we have modified the PUP
algorithm as described earlier with SHT.

6.1. SHT–PUP

Recall that PUP was an algorithm developed to build multiple
files in parallel. Its major drawback was that it did not take
into account the fact, that fragments typically consist of
many blocks. We have developed a solution for file carving
fragmented files using SHT and PUP, called SHT–PUP. SHT–
PUP begins by choosing all available headers of a file-type
and attempting to use sequential hypothesis testing as
described above to determine the base-fragment and frag-
mentation point. Once the fragmentation point of each base-
fragment is identified, the remaining available blocks are

classified into bins on the basis of file type. This is realized
by the use of keyword and statistical tests.

Keyword tests utilize the Aho–Corasick algorithm (Aho and
Corasick, 1975), which is a string searching algorithm that
locates elements of a finite set of strings within an input
text. It matches all patterns ‘‘at once’’, so the complexity of
the algorithm is linear in the length of the patterns plus the
length of the searched text plus the number of output
matches. The statistical tests are exactly the same described
in Section 4 and involve entropy of the data and the OSCAR
method (Karresand and Shahmehri, 2006a,b).

It is shown in Garfinkel (2007) that the gap between frag-

ments is rarely more than 80 blocks and that the majority of
the time the gap is much smaller. In fact a gap size of 8 blocks
occurs in 4327 files and the next closest was a gap size of
32 blocks that occurs in 1519 blocks. As a result, we developed
a process called the close region sweep to determine the starting
point of the next fragment. For each base-fragment and
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fragmentation point identified, we look at the bin of the file-
type and attempt to decode each of the blocks in an area of

about 5000 blocks next to the base-fragment. For each file
being recovered we store the top 20 block results based on
our matching metric. If file i is the file with the best of the 20
results say block bx, then wemerge this block to the base-frag-
ment of i. We then proceed with sequential hypothesis testing
again until, another fragmentation point is found. We then
store the best 20 results for the fragmentation point exactly
as we described earlier. We repeat this process until all files
are built or have failed in finding good candidates.

SHT–PUP has the advantage of only serially comparing
blocks until a fragmentation point is detected, and attempting

to then continue from the ‘‘best’’ of available fragmentation
points of all available files. Assuming a goodmatchingmetric,
files with blocks yielding better matching metric scores, will
be built first, thus reducing the blocks required to analyze
for the other file recoveries.

6.2. Bifragment gap carving with SHT

In addition, fragmentation point detection can also be used to
enhance the efficiency of BGC. Recall that starting with a gap
size of 1 all possibilities of blocks between a header and footer
are carved. If bf is the ending point of the first fragment and bs
is the starting block of the next fragment, every combination

of bf starting with bf greater than bhþ1 (block after header),
needs to be evaluated. By utilizing fragmentation point detec-

tion, we can improve this by starting bf at ba where ba is the
detected fragmentation point. For base-fragments with hun-
dreds of files this dramatically improves the performance of
this algorithm.

7. Experiments and results

In this section, we demonstrate the use of the proposed frag-

mentation point detection algorithm by focusing on JPEG file
recovery. Essentially this requires designating a proper
matching metric, i.e., Y, and obtaining the conditional proba-
bilities under two hypotheses, i.e., Pr(YjH1) and Pr(YjH0), as
defined in Section 4. We will then present the performance
results of the method for DFRWS 2006 and DFRWS 2007 test-
sets.

7.1. Choice of matching metric

Amatchingmetric is required to determine the likelihood that
a block follows another in the correct reconstruction of a file.
The metric is used to calculate the conditional probabilities in
the abovementioned two hypotheses that indicate a block fol-
lows another. Motivated by the fact that local smoothness

(Y) >= µ1 (Y) <= µ0Fragmentation Point Detected
Yes No

Fragmentation Point Detected

Make Decision
Y = {Y1, Y2...Yn}

(Y)

Terminal

EOF

Yes

No

File Recovered No Further
Fragmentation Found

Yes

No

No

Merge Blocks i=1,2...n
Yes

Block n
Event Yn

Fig. 6 – Flow diagram of fragmentation point detection algorithm.
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assumptions often hold for natural images, Memon et al. (Pal
and Memon, 2006; Pal et al., 2003; Shanmugasundaram and

Memon, 2003) propose to use the discontinuity between two
neighboring image blocks as a means to determine the likeli-
hood of a block following another. This is realized by comput-
ing the sum of differences across the RGB pixel values
between the edges of two image blocks and is then normalized
by the number of pixels used in the calculation. This returns
a score between 0 and 1 where a score is assumed to indicate
a better match. Fig. 7 shows a very simple example of an im-
age only five pixels long and two blocks being compared for
this image.

7.2. Estimation of model probabilities

The conditional probability density functions for the match-
ing-metric Y, P(YjH0) and P(YjH1), are obtained empirically
from two training sets of 600 images that were randomly

collected and had varying JPEG compression ratios and resolu-

tions. (It should be noted that the training sets did not include
images included in DFRWS 2006 or 2007 test-sets.) In obtaining
P(YjH0), model for fragments that belong together, we mea-
sured the variation in Y by computing it for each block based
on the matching metric in each image with its correct next
block. For the model where fragments are merged incorrectly,
we randomly took three or more fragments from each image
and attempted to find 10 other blocks from other images
that decoded without an error and obtained observations of
Y based on the matching metric only for those blocks that
can be decoded correctly. Fig. 8 provides the conditional prob-

abilities. It can be seen that the resulting Y values in both
cases are significantly apart from each other. We set the
thresholds desiring a detection rate of 0.7 and false elimina-
tion rate of 10"15.

While we use existing models to determine Pr(YjH0), we
believe that a further improvement can be achieved by
dynamically building a model for each image. By evaluating
pixel-wise differences in the recovered parts of an image, we
can build and refine the model by also updating it with the
subsequently merged blocks.

7.3. Results

Using these models, the proposed method on fragmentation
point detection, as described in Fig. 6, is applied to recover
JPEG images in DFRWS 2006 and 2007 test cases. We must

note again that during fragmentation point detection false-
eliminations (i.e., a fragmentation point is identified before
the actual fragmentation point) are preferable over false-addi-
tions (i.e., fragmentation point identified belongs to another
file). This is because the second step of the carving in PUP
and BGC can look at a large number of potential fragments
to determine the next block to build the file and the falsely
eliminated blocks will be in contention for being chosen. On
the other hand, manual intervention is required to recover
from a false addition.

4 5

1 2 3

4 5

321

Fig. 7 – Simple example of which pixels are compared
against which pixels.

Fig. 8 – Model for both correct and incorrect mergings of JPEG blocks.
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Both the DFRWS 2006 and 2007 challenge test-sets lack

a file table, therefore, the default block size is set to 512 bytes.
The DFRWS 2006 challenge test set consists of 14 JPEG images
of which only 7 are fragmented. Each of the seven fragmented
JPEGs have only two fragments (i.e., are bi-fragmented). In
addition, the second fragment of each fragmented image is
in front of the starting fragment (i.e., had a greater block num-
ber than the starting fragment). The DFRWS 2007 challenge
test set contains 19 JPEGs only one of which is not fragmented.
In addition, a few of the JPEGs have three or more fragments.
One of the JPEGs has six fragments. To make the reassembly
problem even harder, some fragments are stored in a location

behind the correct fragment that precedes it. In other words,
the fragmentation point of a fragment has a block number
greater than the starting point of the next fragment. This
makes recovery much trickier and as a result our close region
sweep aspect of the SHT–PUP algorithm looks after and before
the fragmentation point. Finally, some of the JPEGs have delib-
erately introduced errors causing our decoder to fail. Some
JPEGs also have missing fragments. We do not attempt to cor-
rect or recover from decoding errors or missing fragments.

We now present the results for both SHT–PUP, BGC and
BGC with SHT, SHT–BGC. It should be noted that we initially

implemented BGC based solely on information provided in
Garfinkel (2007). However, the resulting implementation had
a running time of 80 min for recovering all images in DFRWS
2006. We thenmodified, the algorithm to detect the first block
that failed to decode after the header of an image, and ensured
that bf (the ending point of the base-fragment) was checked
starting from the block prior to the one that failed to decode.
Then for each legitimate gap size, wemoved bf to the left until
it reached the header. This reduces the running time to 22 min
for DFRWS 2006 test-set. This, technique when utilized with
SHT, reduces the running time to 5 s. An alternative imple-

mentation for BGC is instead to start bf at the block before
the decoding error as described earlier and try all possible
gap sizes before moving left for the new bf.

Even without SHT this implementation takes only 11 s to
recover all images from DFWRS 2006 test-set as compared to
SHT–BGC which took 5 s. Results are obtained based on the
latter described implementation of BGC.

Table 2 provides the results of recovery using Decoding
Detection, BGC as well as SHT–PUP. Decoding detection is noth-
ing more than decoding until an error occurs or the image is
built. While this cannot recover fragmented images, it is
important to show how it also fails to identify fragmentation

points correctly and even more importantly, how it causes
false additions (8 in 2007 and 1 in 2006). Finally, decoding
detection does not cause false eliminations since it merges
all blocks that can be successfully decoded.

In contrast, our SHT–PUP causes zero false additions, how-
ever, there are a total of five false eliminations. All five of the
falsely eliminated images are fully recovered, and this is
because the close region sweep phase correctly identifies
that the first falsely eliminated block for each fragment be-
longs to the fragment (it has the best score of the other 5000
blocks checked). It should be noted that due to deliberately

introduced decoding errors and missing blocks some JPEGs
are unable to be fully recovered, however, in all but one case
we are able to achieve the best possible construction.

It is also interesting to note that three of the falsely elimi-
nated images have a detected fragmentation point exactly

one block prior to the actual fragmentation point (false elimi-
nation). A closer inspection reveals that these cases occur
when the test for a block is inconclusive and the next block
causes adecodingerror. Ourmethodbydefault discardsblocks
that are undecided if a validation fails to avoid a false-addition.
These blocks are later detected to belong to correct fragments
during the recovery phase. In DFRWS 2006, we are able to re-
cover all seven fragmented images without a problem. In
DFRWS2007weare able to recover all but twodecodable (with-
out errors) fragmented images without manual intervention.
One of the two images, is also manually recoverable by identi-

fying the incorrect block and simply stating that it should not
considered for the next reassembly iteration.

8. Conclusion

In this paper, we have demonstrated the effectiveness of
using sequential hypothesis testing for identifying the frag-
mentation point for JPEGs. We have shown the advantages

of true content based recovery compared to techniques that
solely utilize decoding or file structural errors for recovery.
Additional work will be done in building and refining the
models for a file as it is being built. In future work, we plan
to create models for other file formats, like those of Microsoft
Office, Email (PPT files), etc. In addition, we wish to improve

Table 2 – Recovery results for DFRWS 2006 and 2007 test-
sets

DFRWS 2006 2007

Total images 14 18
Fragmented images 7 17
Un-fragmented images 7 1

Decoding detection
Recovered un-fragmented 7 1
False elimination 0 0
False addition 1 8
Fragmentation point detected 5 9
Recovered fragmented 0 0
Total recovered 7 1

Bi-fragmented gap carving
Recovered un-fragmented 7 1
False elimination 0 0
False addition 1 8
Fragmentation point detected 5 9
Recovered fragmented 0 2
Total recovered 14 1
Time taken 9 s Hours
Time with SHT 5 s Hours

SHT PUP
Recovered un-fragmented 7 1
False elimination 2 3
False addition 0 0
Fragmentation point detected 5 14
Recovered fragmented 7 16
Total recovered 14 17
Time taken 13 s 3.6 min
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the accuracy and efficiency of the close region sweep phase by

identifying the most likely candidates for the next fragment’s
starting point. Finally additional work needs to be conducted
in recovering from decoding errors as well as identifying and
handling missing fragments.
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