
Windows operating systems agnostic memory analysis

James Okolica*, Gilbert L. Peterson

Department of Electrical and Computer Engineering, Air Force Institute of Technology, USA

Keywords:

Memory forensics

Microsoft windows

PDB files

Operating system discovery

Processes

Registry files

Network activity

a b s t r a c t

Memory analysis is an integral part of any computer forensic investigation, providing

access to volatile data not found on a drive image. While memory analysis has recently

made significant progress, it is still hampered by hard-coded tools that cannot generalize

beyond the specific operating system and version they were developed for. This paper

proposes using the debug structures embedded in memory dumps and Microsoft’s

program database (PDB) files to create a flexible tool that takes an arbitrary memory dump

from any of the family of Windows NT operating systems and extract process, configura-

tion, and network activity information. The debug structures and PDB files are incorporated

into a memory analysis tool and tested against dumps from 32-bit Windows XP with

physical address extensions (PAE) enabled and disabled, 32-bit Windows Vista with PAE

enabled, and 64-bit Windows 7 systems. The results show the analysis tool is able to

identify and parse an arbitrary memory dump and extract process, registry, and network

communication information.

ª 2010 Digital Forensic Research Workshop. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Memory analysis is an integral part of effective computer
forensics. Since the DFRWSmemory challenge in 2005 (Digital
Forensics Research Workshop, 2005), there has been signifi-
cant research done in improving analysis of memory dump

files (Betz, 2005; Schuster, 2006b; Walters and Petroni, 2007).
Unfortunately, these techniques still rely on knowing char-
acteristics of the operating system a priori. Furthermore, in
most cases, these tools only work on a small number of
operating system versions. For instance, while Volatility has
extensive functionality, it only works on Microsoft Windows
XP SP2 and SP3. What is needed is a tool that works on an
arbitrary memory dump regardless of the operating system
version and patch level.

This paper is a first step in achieving this generalized
functionality. By incorporating the work of Alex Ionescu and

Microsoft’s program database (PDB) files (Microsoft Support)

into a memory analysis tool, the tool is able to identify the
operating system and version of a memory dump from the
family of Microsoft NT operating systems (i.e., Windows NT4,
Windows 2000, Windows Server 2003, Windows XP, Windows
Vista, Windows Server 2008, and Windows 7). The tool then
uses this information to locate the kernel executable and

extract its globally unique identifier (GUID). With the kernel
name and GUID, the tool retrieves the PDB file from Micro-
soft’s online symbol server and uses it to enumerate the key
operating system structures necessary to parse the memory
dump.

The remainder of this paper presents an overview of the
memory analysis work already done and a methodology for
combining these different pieces of memory analysis and
parsing to make a Windows agnostic tool. Finally, the paper
discusses applying the resulting tool to a memory dump from
a 32-bit Windows XP SP3 with physical address extensions

enabled and disabled, 32-bit Windows Vista with physical

* Corresponding author.
E-mail addresses: jokolica@afit.edu (J. Okolica), gpeterson@afit.edu (G.L. Peterson).

ava i lab le a t www.sc iencedi rec t .com

journa l homepage : www.e lsev ie r . com/ loca te /d i in

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) S 4 8eS 5 6

1742-2876/$ e see front matter ª 2010 Digital Forensic Research Workshop. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.diin.2010.05.007

address extensions enabled, and 64-bit Windows 7. In each

case, the tool identifies the operating system version and
memory layout, extract all of the process and registry infor-
mation (including pages stored in page files and memory
backed files), and extract network communication
information.

2. Background

Live forensics examines the most volatile, and generally the
most recent cyber artifacts. Process activity, configuration
changes, and network communication occur constantly and
by examining volatile memory, the most recent instances of
each of these are captured. Furthermore, the kernel execut-
ables residing on disk may not mirror the code actually
running in memory (particularly if malware programs have
hooked them). Examining the operating systemprograms that
are in memory provides themost accurate picture of what the
operating system is actually doing.

Live response information investigators typically seek
include:

! system data and time,
! logged on users and their authorization credentials,
! network information, connections, and status
! process information, memory and process-to-port
mappings

! clipboard contents
! command history
! services, driver information

! open files and registry keys as well as hard disk images
(Prosise et al., 2003).

While ideally, the method for collecting memory should
not affect the operating system, if no collection method has
been implemented a priori, options are limited. In these cases,
the best methodmay be to use software tools that will impact
the operating system as a part of collecting the image. There
are two distinct approaches: starting a new collection process
(Carvey, 2007) or inserting a collection driver into an existing
kernel process. The traditional software collection method is

to start a new process, such as Madiant’s Memoryze, that does
not use operating system application programmer interfaces
(APIs) or graphical user interfaces (GUI) so that it has less
system impact and is less likely to be subverted by an infected
operating system. However, creating a new process still
creates new process records, object tables, and device tables
as well as allocates space within a portion of main memory.
The alternative is adding a driver to an existing kernel process.
The downside of this method is that it modifies the space for
one of the processes that will be captured. This may later call
into question whether other, unintended changes were made
to that process’ space as well, possibly tainting the results.

There are several tools that parse memory dumps and
extract process information. Two of the early tools that
scanned memory dumps to find processes were Chris Betz’s
memparser (Betz, 2005) and Andreas Schuster’s ptfinder
(Schuster, 2006a). In addition, Brendan Dolan-Gavitt has
developed tools for extracting Windows registry information

(Dolan-Gavitt, 2008). More recently, Aaron Walters and others

have developed Volatility (Walters and Petroni, 2007) which in
addition to finding processes and registry information, also
finds the network and configuration information. Further-
more, Volatility 1.3 parses hibernation files. However, what all
of these tools have in common is that they are limited to
specific versions of specific operating systems, e.g., 32-bit
versions of Windows XP SP2 and SP3. The reason for this is
that since the data structures used by an operating system
change from version to version, new versions of the software
are needed each time. However, Barbarosa and Ionescu have
provided a means of discovering from within a memory

dump, the operating system version that was running
(Barbarosa; Ionescu). We combine this with Schreiber’s
method for analyzing the program database files (Microsoft
Support) generated when Microsoft compiles its code
(Schreiber, 2001a,b) to create a Windows agnostic memory
analysis tool.

3. Methodology

By combining work done by (Barbarosa; Dolan-Gavitt, 2008;
Ionescu; Russinovich and Solomon, 2005; Schreiber, 2001a;
Schuster, 2006a; Walters and Petroni, 2007), it is possible to
take an arbitrary memory dump from one of the Windows NT
family of operating systems (i.e., Windows NT4, Windows
2000, Windows Server 2003, Windows XP, Windows Vista,
Windows Server 2008, and Windows 7) and parse it. This
Windows agnostic approach provides several benefits. First,
memory analysis tools no longer need to be coded to a specific

operating system version and patch level; second, memory
dumps that are acquired without operating system interac-
tion (e.g., via direct memory access) may be parsed without
interacting with either the operating system or a system
administrator. Finally, as new versions and patch levels of
operating systems are released, the existing memory analysis
tools should continue to work. Fig. 1 shows the Windows
agnostic memory analysis process.

First, using the work of Barbarosa and Ionescu,
_DBGKD_DEBUG_DATA_HEADER64, _KDDEBUGGER _DATA64
and _DBGKD_GET_VERSION64 records are found and parsed to

determine whether the dump comes from a 32-bit, 32-bit with
physical address extensions enabled, or a 64-bit operating
system. Using this information (Russinovich and Solomon,
2005), the kernel page directory table base is found. With
this information and (Russinovich and Solomon, 2005), virtual
addresses are parsed into physical addresses. Next, the base
address of the kernel executable and of tcpip.sys are found
from _DBGKD_DEBUG_DATA_HEADER64 directly and via
PS_LOAD ED_MODULE_LIST respectively. By examining the
debug section of these two portable executables (Microsoft
Windows Hardware Developer Central), the globally unique
identifier (GUID) and age are extracted and used to download

the correct program database from Microsoft’s symbol server
(Microsoft Support). The PDB file is then parsed (Schreiber,
2001a), and the exported kernel data structures are extrac-
ted. With these data structures, it is possible to parse the
memory dump without any hard-coded offsets (although the
names of the structures (e.g., _EPROCESS) do still need to be

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) S 4 8eS 5 6 S49

hard-coded). Finally, using similar techniques, the location of
the symbols in tcpip.sys is extracted from tcpip.pdb allowing

the network communication data to be foundwithin the tcpip.
sys portable executable’s data section. With all of this infor-
mation, it is possible to extract process, registry, and config-
uration information using techniques discussed by Schuster
(2006b), Dolan-Gavitt (2008), and Walters (Walters and
Petroni, 2007) in the same way that other tools (e.g., Vola-
tility (Walters and Petroni, 2007)) do.

The remainder of this section describes the constituent
parts of the process in greater detail.

3.1. Determining the operating system

Memory parsing tools generally need to be given information
about the memory dump (e.g., the processor type of the host
machine, the operating system of the host machine (possibly

including the specific service pack and patches installed), and
whether physical address extensions are enabled). In Micro-
soft’s family ofWindows NT operating systems (i.e., Windows
NT4, Windows 2000, Windows Server 2003, Windows XP,
Windows Vista, Windows Server 2008, and Windows 7), this
information is available in memory (Barbarosa; Ionescu). A
key structure in the include files provided by Microsoft for
developers of dynamic link libraries (DLLs) and debuggers is
_DBGKD_GET_VERSION64 shown in Fig. 2.

When the kernel is running, this structure contains critical
information including the base virtual address of the kernel’s
portable executable, a doubly linked list of the loaded

modules, and whether physical address extensions are
enabled. It also includes the major and minor operating
system build numbers and the type of machine/processor
(Microsoft Windows Hardware Developer Central). Either
immediately preceding or immediately following this struc-
ture in memory is the _DBGKD_DEBUG_DATA_HEADER_64

which contains two fields, an owner tag which is the four-byte
literal KDBG and the size of the _DBGKD_GET_VERSION64

structure and _KDDEBUGGER _DATA64which contains among
other things, the virtual address of all loaded modules and (in
Windows 7) the location of the table of object type pointers.
Our memory parser uses this information to scan a memory
dump searching for KDBG followed by a four-byte field that is
less than 4096 and then extracts the type of machine (i.e., 32-
bit, 32-bit with PAE, or 64-bit). The operating system version,
and the virtual addresses of the kernel executable, the list of
loaded modules, and the object type table.

3.2. Mapping virtual addresses to physical addresses

The one value _DBGKD_GET_VERSION64 does not have is the
kernel page directory table base, which is used to translate
virtual addresses to physical ones. When the processor acti-

vates a process, it loads the process’ page directory table base
into the CR3 register and uses it to convert its virtual
addresses into physical addresses. As a result, all other
memory addresses used by the operating system are virtual
addresses. Interestingly, although user address space is
remapped by process, kernel address space is the same for all
kernel processes. Therefore, finding any single page directory
table base for a kernel process is sufficient to map any kernel
process’ virtual addresses to physical addresses.

Virtual addresses for i386 (32-bit processor) machines
follows one of two formats depending on whether physical
address extensions are disabled or enabled as shown in Fig. 3

(Russinovich and Solomon, 2005).
If physical address extensions are disabled, the highest ten

bits are the index into an entry in the page directory table,
a table composed of 32-bit words. Each entry in the page
directory table points to a page table entry table. These page
table entry tables are also composed of 32-bit words which

32-bit, 32-bit with PAE,
or 64-bit

Kernel Page Directory
Base

Kernel PE LocationAddresses of Loaded
Modules

Address of Object Type
Table (Windows 7)

Kernel GUID & Age
(from PE Debug Section)

Retrieve Kernel PDB
(from Microsoft Symbol

Server)

Kernel Data Structures

tcpip.sys GUID & Age
(from PE Debug Section)

Retrieve tcpip.sys PDB
(from Microsoft Symbol

Server)

Locations of tcpip.sys
symbol in Data Section

UDP and TCP Network
Activity (by process)

Process records and
Registry records

Process information

System Users
(from Registry)

Process information

Process Objects

Fig. 1 e A Windows-agnostic memory analysis process flow.

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) S 4 8eS 5 6S50

point to specific pages in memory. When an i386 processor
with physical address extensions disabled is provided with

a virtual address, it starts with the page directory table base
for the processor. It then takes the high ten bits of the virtual
address, multiplies it by 4 (for 32-bit words) and uses that as
the offset into the page directory table. At that location, it finds
the physical address of the base of the relevant page table
entry table. The processor then uses the next ten bits of the
virtual address, multiplies it by 4 (for 32-bit words) and uses
that as the offset into the page table entry table. At that
location, it finds the physical address of the base of the rele-
vant page of memory. It then uses the last 12 bits as an offset
to find the specific location in physical memory. If physical

address extensions are enabled, and additional level of indi-
rection is introduced as shown in Fig. 3. In this case, the page
directory table base is actual the physical address of a page
directory pointer table. The high two bits of the virtual address
are an offset into this page directory pointer table. The phys-
ical address in the page directory pointer table is then the base
of a page directory table and the remaining process follows as
above (though the indices are nine bits instead of ten). Phys-
ical address extensions change the page directory pointer
table, the page directory table, and the page entry table from
32-bit words to 64-bit words (meaning indices are multiplied

by eight instead of four). The "64 architecture builds on these
three levels, increasing the page directory pointer table to 512
entries and introducing a fourth level of indirection, called the
page map levels as shown in Fig. 3. In the "64 (and IA32-E)
virtual memory model, the first nine bits are the page map
level table index, followed by nine bits for the page directory
pointer table index, followed by nine bits for the page direc-
tory table index, followed by nine bits for the page table entry
table index, followed by twelve bits for the physical page
offset. In each of these four cases, if the large page flag is set in

the page directory entry, there is one less level of indirection

as the page table entry and the page frame offset are
combined to generate an offset into either a two (21 bit offset)
or four megabyte page (22 bit offset).

To find the page directory bases used above, the self-refer-
encingnatureof thepagedirectories shown inFig. 4 isused. For
instance, in32-bitnoPAEoperating systems, thepagedirectory
entry that is 0xC00 from its page directory base points to the
page directory base. In the case of PAE enabled, the first two
(possibly three) entries of thepagedirectory pointer table point
to user space while the last entry is guaranteed to point to
kernel space. As a result, the fourth entry in the page directory

pointer table is the physical address of the first entry. Finally,
the64-bitpointeroffset0x68 fromthepagemap level tablebase
points back to the page map level table base address. While
these observations are not guaranteed to work, heuristically
starting at the beginning of physical memory and proceeding
until the appropriate condition is found results in the page
directory table base of a kernel process.

Ideally, all referenced memory exists as physical addresses
in the memory dump; however, this is often not the case. The
low twelve bits of thepage table entries shown in Fig. 5 areflags
that indicate different items of interest. One particular flag of

interest is bit 0. If bit 0 is 0 than the physical page of memory
referenced is invalid. This may mean that the page frame is
transitioning from memory to disk (if bit 11 is set) or that the
page frame is a prototype page (if bit 10 is set) or that the page
framehasbeenpagedout todisk (ifbits0, 10,and11areallzero).

If the page frame has been paged to disk, then the page table
entryneeds tobe interpreteddifferently as shown inFig. 6. Bits 1
through 4 determine which page file the page frame is in (up to
16 page files are possible) and bits 12 through 32 determine the
offset into the page file. If both the page file number and offset
are zero, than the page table entry is referencing a “demand

zero” page, i.e., a page that has been allocated and filled with
zeros but which has yet to have any information stored in it.

In addition to paged to disk page table entries, there are
also page table entries that are prototype page table entries.
Prototype pages are pages that can be shared between two or
more processes (e.g., memory that contains configuration
information). Prototype page table entries have their own
format shown in Fig. 7.

_DBGKD_GET_VERSION64
0x00 UShort MajorVersion
0x02 UShort MinorVersion
0x04 UChar ProtocolVersion
0x05 UChar KdSecondaryVersion
0x06 UShort Flags
0x08 UShort MachineType
0x0A UChar MaxPacketType
0x0B UChar MaxStateChange
0x0C UChar MaxManipulate
0x0D UChar Simulation
0x0E UShort[] Unused
0x10 UQuad KernBase
0x18 UQuad PsLoadedModuleList
0x20 UQuad DebuggerDataList

_DBGKD_DEBUG_DATA_HEADER64
0x00 List_Entry64 List
0x10 ULong OwnerTag
0x14 ULong Size

_KDDEBUGGER_DATA64
0x00 _DBGKD_DEBUG_DATA_HEADER64 Header
0x18 ULong64 KernBase
0x20 ULong64 BreakPointwithStatus
0x28 ULong64 SavedContext
0x30 UShort ThCallBackStack
0x32 UShort NextCallBack
0x34 UShort FramePointer
0x36 UShort PAEEnabled:1
…
0x48 ULong64 PSLoadedModuleList
…
0xA0 ULong64 OBTypeObjectType

Fig. 2 e MS Windows’ debug structures.

Virtual Address – 32-bit with PAE Disabled

Page Directory
Table Index

Page Table
Index

Page Frame Offset

0122231

Virtual Address – 32-bit with Physical Address Extensions

Page Directory
Table Index

Page Table
Index

Page Frame Offset

0122131

Page Directory
Pointer Table
Index

30

Virtual Address – 64-bit

Page Directory
Table Index

Page Table
Index

Page Frame
Offset

0122148

Page Directory
Pointer Table
Index

30

Page Map
Level Table
Index

39

Fig. 3 e Virtual address to physical address translation.

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) S 4 8eS 5 6 S51

On a 32-bit operating system with PAE disabled, the
prototype page table entry is contained within bits 1 through 7

(0e6) and 11 through 31 (7e27) of the page table entry and is an
offset into the non-paged pool area (located at virtual address
0xe1000000 in 32-bit operating systems). On a 32-bit operating
system with PAE enabled, the high 32 bits contain the virtual
address of the page frame. Finally, if the prototype page table
entry itself is invalid, then the prototype page is actually a file-
backed page (i.e., a memory-mapped file). In this case, the
actual memory is stored within a file stored in non-volatile
memory. In the case of memory-mapped files, the prototype
page table entry is actually a pointer to a subsection. Stored
within the control area of the subsection, is a pointer to the file

object. To determine the base offset into thememory-mapped
file, the subsection base is subtracted from the prototype page
table entry then multiplied by either 4 or 8 (depending on if

PAE is disabled or enabled) and then added to the starting
sector of the subsection. The low 12 bits of the virtual address

are then added to the base offset (multiplied by 4096 to
account for the page size).

3.3. Operating system structures

Once a page directory table base (or equivalent) is found, the
last itemnecessary to determine the operating system version
is to retrieve the major and minor operating system version
from the kernel’s portable executable. Recall that the virtual
address of the kernel’s portable executable is stored in the
_DBGKD_GET_VERSION64 structure. Now that a page direc-
tory table base is known for kernel space, this virtual address
is converted to a physical address and the major and minor
version of the operating system stored in the kernel’s portable

executable (Microsoft Windows Hardware Developer Central)
retrieved. In addition, stored within the debug section of the
kernel’s portable executable is its globally unique identifier
(GUID). This GUID provides the key to improving the versa-
tility of memory parsers.

In general, memory parsers have operating system struc-
tures hard coded for the specific operating system versions/
patch levels that they handle. Unfortunately, as new version/
patches come out, hard-coded parsing tools may become
obsolete. As part of Microsoft’s compilation and linking
process, Microsoft records debug information in a program
database (PDB) file (Microsoft Support) including the exported

structures used by the executable. Whenever Microsoft
releases a patch (or operating system version), it places a copy
of the PDBs for any changed executables on its symbol server.
While the primary purpose of this is for use by Microsoft’s
own debugging tools (e.g., windbg and kdbg), these PDB files
contain information that can be used by any debugging or

32-bit

32-bit with Physical Address Extensions

64-bit

0x55d000 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx
…
0x55dc00 0x55d000 xxxxxxxx xxxxxxxx xxxxxxxx

0x55d000 xxxxxxxx 00000000 xxxxxxxx 00000000
0x55d010 xxxxxxxx 00000000 0x55d000 00000000

0x55d000 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx
…
0x55d060 xxxxxxxx xxxxxxxx 0x55d000 00000000

Fig. 4 e Self-referencing nature of directory table bases.

Flags
for

Page Map Level Table Entries
Page Directory Pointer Table Entries

Page Directory Table Entries
Page Table Entries

Flags

012
Bit 0: Valid 1 = Valid 0 = Invalid
Bit 1: Write 1 = Writeable 0 = Read Only
Bit 2: Owner 1 = User Mode 0 = Kernel Mode
Bit 3: Write-through 1 = Write Through
Bit 4: Cache Disabled 1 = Cache Disabled
Bit 5: Accessed 1 = PFN Accessed 0 = PFN not accessed
Bit 6: Dirty 1 = PFN Updated 0 = PFN not changed
Bit 7: Large Page (PDE only) 1 = 4MB/2MB changes 0 = 4K pages
Bit 8: Global 1 = Global
Bit 9: Copy On Write 1 = Copy On Write
Bit 10: Prototype 1 = Prototype page
Bit 11: Transition 1 = Page is transitioning to disk

Fig. 5 e Flags for page map level, page directory pointer,
page directory, and page table entries.

Page Directory Entry and Page Table Entry
for a

Page Table mapped to disk
(Bit 0 = Bit 11 = 0)

Page File PFN Offset Flags Page table

051231 1

Fig. 6 e Page table entry layout for frames paged to disk.

Page Table Entry for a Prototype Page
(32-bit PAE disabled)

Prototype Index (bits 5..24)
Prototype Index
(bits 1..4)

051131 1

Page Table Entry for a Prototype Page
(32-bit PAE enabled)

Prototype Virtual Address

0103263 1

Prototype Virtual Address = Non-paged Pool Base Address
+ Prototype Index * 4

10

1 0

01

Fig. 7 e Page table entry layout for prototype pages.

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) S 4 8eS 5 6S52

memory parsing tool. To retrieve these files, a GET request is

sent to the Microsoft Symbol Server with the name of the
executable, the GUID and the name of the compressed
program database file. Although Microsoft does not release
the format of PDB files, in 2001 Schreiner provided some
insight into its structure (Schreiber, 2001a). In addition, the
PDB file format in use in 2001 (Schreiber, 2001a) is still valid
suggesting that the PDB file format is very stable.

PDB files are structured like file systems. First, there is a root
“stream”that isan indexofallof thestreamscontained inthePDB
file. Second, the file is divided into 400 byte “blocks” and streams
may span multiple non-contiguous blocks. Finally, there are

blocks of “obsolete” data in the file where a block had been
previouslyallocated toastreamandthensubsequently “deleted.”

The PDB file beginswith the PDB file header shown in Fig. 8.
The first field of interest, dPageSize, tells how long each block
of text is (generally 0x400). The next field of interest, Root-
Stream is a “PDB_STREAM” data structure composed of two
parts, the first being the size of the stream. Finally, the last
field in the header, awRootPages, is the stream pointer (i.e.,
the index number of the block) that contains a list of the
stream pointers containing the root stream. For instance,
awRootPages may be 0x30. In that case at byte 0xC400

(0x30 " 0x400), there would be a list of stream pointers (e.g.,
0x2d, 0x2e, 0x2f) describing where the root stream is. The root
stream itself (in the above example, located at block 0x2d, byte
0xB400) begins with a 32-bit word defining the number of
streams contained in the PDB file. This is followed by a 32-bit
word defining the number of blocks contained in each stream
(possibly some of these are 0 block streams). For instance, if
there are seven streams in the PDB file, the root stream might
begin with 0x07 0x02 0x10 0x0 0x01 0x14 0x0a 0x11. Immedi-
ately following the number of streams and the size (in blocks)
of each stream is a list of the blocks containing each stream. In

the above example, the two 32-bit words following the list
would be the blocks containing stream 0; the sixteen 32-bit
words following these would be the blocks containing stream

1; and the next 32-bit word would be the block containing

stream 3 (since the size of stream 2 is zero).
While parsing the PDB file into streams is relatively

straightforward, determining the format and purpose of the
individual streams is less so. It does not appear that a specific
stream number always perform the same function. However,
there are a few heuristics that produce good results. For
instance, the “section”stream(i.e., thestreamthatdescribes the
sections in the associated portable executable) seems to always
begins with the either the literal “.data” or “.text”. The “struc-
ture” stream (i.e., the stream containing information about the
data structures used by the associated portable executable)

seems to always begin with 0x38. In addition, the “symbol”
stream (i.e., the stream containing the symbols used by the
portable executable) ismade up of records that start with a two
byte record size (safe to assume a value of less than 0x100) and
a twobyte literalof 0x110E. Finally, the“symbol location”stream
(i.e., the stream that adjusts the location of symbols in the data
section) seems to always immediately follow the section
stream. While the format of the individual streams is not
available, by comparing the streams with known values, some
observations are made. Specifically, the records in the symbol
stream shown in Fig. 9 are made up of a variable record size

followed by six unknown bytes of data, followed by the 32-bit
unadjusted offset of the symbol in the data section, followed by
the 16-bit type of symbol, followed by the name of the symbol.

The records in the sections stream inFig. 9 aremadeupof an
8-byte section name, followed by the 32-bit virtual size of the
section, followed by the 32-bit virtual address of the section,
followedbyseveralmorefieldsdescribed inMicrosoft’s Portable
Executabledocument (MicrosoftWindowsHardwareDeveloper
Central). The records in the symbol location stream are
a collection of 32-bit word pairs where the first word is the
unadjusted offset and the second word is the adjusted offset.

Unlike the streams described above, parsing the structures
stream is less straightforward. Each record in the structures

PDB Header Structures

#define PDB_SIGNATURE_200 \
"Microsoft C/C++ program database 2.00\r\n\x1AJG\0“

#define PDB_SIGNATURE_TEXT 40

typedef struct _PDB_SIGNATURE {
BYTE abSignature [PDB_SIGNATURE_TEXT+4];

} PDB_SIGNATURE;

typedef struct _PDB_STREAM {
DWORD dStreamSize; // in bytes, -1 = free stream
PWORD pwStreamPages; // array of page numbers

} PDB_STREAM,;

typedef struct _PDB_HEADER {
PDB_SIGNATURE Signature; // PDB_SIGNATURE_200
DWORD dPageSize; // 0x0400, 0x0800, 0x1000
WORD wStartPage; // 0x0009, 0x0005, 0x0002
WORD wFilePages; // file size / dPageSize
PDB_STREAM RootStream; // stream directory
WORD awRootPages []; // pages containing PDB_ROOT

} PDB_HEADER;

typedef struct _PDB_ROOT {
WORD wCount; // < PDB_STREAM_MAX
WORD wReserved; // 0
PDB_STREAM aStreams []; // stream #0 reserved for stream table

} PDB_ROOT;

Fig. 8 e PDB file header.

Symbol Stream
0x00 UShort Record Size
0x02 UShort Unknown1
0x04 ULong Unknown2
0x08 ULong Offset
0x0C UShort Type

0x0E *Char Symbol Name

Section Stream
0x00 *Char Name (not null terminated)

0x08 ULong Virtual Size
0x0C ULong Virtual Address
0x10 ULong Raw Size
0x14 ULong Raw Pointer
0x18 ULong Relocation Pointer
0x1C ULong Line Pointer
0x20 UShort Relocation Count
0x22 UShort Line Count
0x24 ULong Characteristics

Symbol Relocation Stream
0x00 ULong Relocation Address
0x04 Ulong Data Address

Structure Stream
0x00 UShort Record Size
0x02 STRUCTURE_RECORD

Fig. 9 e PDB stream structures.

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) S 4 8eS 5 6 S53

stream shown in Fig. 10 is a “field” with an index that begins at

zero and proceeds sequentially. This index is important
because later fieldsmake reference to earlier fields via the field
index. Each field begins with a record size. This is followed by
a data type [source]. The one oddity is if the offset for
LF_MEMBER is 0x8004 or the size for LF_UNION, LF_STRUC-
TURE or LF_ARRAY is 0x8004, or the value for LF_ENUMERATE
is 0x8004, then an additional 32 bits are added to the size of
these structures and the next 32 bits are the offset, size, or
value respectively. Additionally, LF_STRUCTURE, LF_UNION,
and LF_ENUM are often defined twice, once as a placeholder
(e.g., to handle self-referencing) and once with a complete

structure. In this case, the first definition is a shell with
a record size of zero and the second definition contains all of
the relevant information including the name.

3.4. Finding and instantiating processes in memory

Once the memory model and the operating system data

structures are known (by extracting them from the kernel’s
PDB file), they are used to parse thememory dump and extract
configuration and process information. For instance, process
information is stored in the _EPROCESS structure. The first
field in _EPROCESS is itself a structure called _KPROCESS.
Within _KPROCESS, the first field is another structure called
_DISPATCHER_HEADER. Two fields present in the _DIS
PATCHER_HEADER are a two byte tag field and a two byte size
field providing the size of _KPROCESS in 32-bit words (repre-
senting the size in 32-bit words is true regardless of whether
the operating system is 32-bit or 64-bit). With this informa-

tion, it is possible to create a signature for processes (Schuster,
2006b). By using the structures from the PDB file, the size of
KPROCESS is calculated. Further, for all operating system
versions through Windows 7, the type for a process is 0x03
(determined empirically throughMicrosoft’s kernel debugger).
With this information, a _DISPATCHER_HEADER template is
created and populated using the above values and the

structures from the PDB file. This template may then be used

as a “process signature” for scanning memory with. Once the
_EPROCESS structure is found, instantiating it is straightfor-
ward using the structures in the PDB file. For instance, the
page directory base is stored in the _KPROCESS structure
within the _EPROCESS record while a pointer to the object
table is located directly in the _EPROCESS structure. Although
the location of the fields within these structures is found at
run-time using the PDB file, the names of these fields, e.g.,
_EPROCESS, is hard-coded and is assumed to remain static
across all versions of the operating system (the one known
exception to this is the change inWindows 7 from a pointer to

_OBJECT_TYPE in the _OBJECT_HEADER field to having an
index into the obObjectTypeTable). Other fields of interest
include the amount of kernel and user time the process has
consumed, the time the process was created, the name and
unique id of the process, the process’ token (which relates
back to the user who created the process), the priority of the
process, and the number of read, write, and other operations
the process has performed. A final item of interest is the
process environment block which contains, among other
items, the loader table for all modules loaded by the process,
the parameters the process was started with, as well as the

operating system version and number of processors.

3.5. Finding and instantiating configuration
information in memory

While finding configurationmanagement “hives” (i.e., registry
entries) in memory is also done with a signature key, the
instantiation is less straightforward (Dolan-Gavitt, 2008). The

configuration manager is composed of several “hives” with
each hive having a specific purpose. For instance, under
Windows XP SP2, there are hives for the NTUser, UsrClass,
currently logged in user, LocalService user, NetworkService
user, template user (“default”), Security Account Manager
(SAM), SYSTEM, SECURITY, SOFTWARE, and two volatile hives
that have no on-disk representation (HARDWARE (hardware
installed on the particular machine) and REGISTRY (a header
hive that provides a unified namespace)) (Dolan-Gavitt, 2008).
Each of these configurationmanagement hives (_CMHIVE) has
a field named signature with a value of 0xbee0bee0. With the

signature, it is possible to find potential configuration
manager hives in memory (and then remove any false posi-
tives by examining their structures). Once these hives are
found, they still need to be parsed. Hives are broken down into
fixed length 0x1000 byte binswith variable lengths cells within
them. The cells are generally of one of two types: key nodes
and value nodes. Key nodes provide the directory structure
while value nodes provide the values for the configuration
keys. References to cells in a bin are made using a cell index.
The high bit of the cell index indicates whether the cell index’s
main storage is stable (on-disk) or volatile (only in memory).
The next 10 bits are the directory index and work the hive’s

map to point to a hive table. Bits 12e20 are the table index and
provide an offset into the table found using the directory
index. Finally, the low 12 bits are the cell offset for the hive
table found previously (Dolan-Gavitt, 2008).

Key nodes have a name followed by either values for the
count of subkeys and a cell index containing the LF records (an

LF_FIELDLIST
list of fields

LF_STRUCTURE
UShort Element Count
UShort Properties
ULong Field Index
ULong Derived
ULong Vshape
UShort Size
Char* Name

LF_POINTER
ULong Underlying Type
ULong Pointer Array

LF_MEMBER
UShort Properties
ULong Underlying Type
UShort Offset

Char* Name
LF_UNION

UShort Element Count
UShort Properties
ULong Field Index
UShort Size
Char* Name

LF_ARGLIST
ULong Element Count
ULong[] Arguments

LF_PROCEDURE
ULong Return Value Type
UChar Call Type
UChar Unknown
UShort Element Count
ULong Field Index

LF_ENUM
UShort Element Count
UShort Properties
ULong Underlying Type
ULong Field Index
Char* Name

LF_ENUMERATE
UShort Properties
UShort Value
Char* Name

LF_ARRAY
ULong Underlying Type
ULong Index Type
UShort Size
UShort Unknown

LF_BITFIELD
ULong Underlying Type
UChar Size
UChar Offset
UShort Unknown

Fig. 10 e PDB structures.

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) S 4 8eS 5 6S54

arrayof cell indicesandsubkeyabbreviations) or a list of values

(which also is a count followed by cell indices). Consider, for
example, translatingaprocess token intoausername. First the
SOFTWARE hive is located. Then the key node tree is traversed
to find the value list for Microsoft/Windows NT/Current
Version/Profile List. At each level (starting from the root index),
a locationof thesublist is found.Eachentry in thesublistpoints
to a key node with a name. From the SOFTWARE hive, the first
sublist is traversed until a key nodewith the nameMicrosoft is
found. Then the sublist at that key node is traversed until
WindowsNT is found. This is repeated until the Profile List key
node is found. At this point, the sublist is traversed looking for

aname thatmatchesa string representationof the token.Once
this key node is found, the sublist is traversed to find the Pro-
fileImagePath key node. This key node has a value list with
(in this case) a single value for thehomedirectory of that token.
Ingeneral thefinal subdirectoryof thatpathshouldcorrespond
to the name of the user who started the process.

3.6. Finding and instantiating network activity in
memory

In addition to containing the data structures of the executables,
the PDB files also contain the symbols used by an executable.
This is particularly important since the Windows operating
system kernel does not directly handle communication.
Windows uses tcpip.sys (a portable executable) to handle its

TCP/IP communication. Furthermore, the data structures (i.e.,
symbols) used to store the communication activity are not
exported. Instead, thenamesandstructuresof the relevantdata
structures must be determined via reverse engineering. For
instance, inWindowsXP, the symbol _AddrObjTable isa tableof
process IDs and TCP connections while _TCBTable is a table of
process IDs and UDP connections. The structure of these
symbols (along with the symbols for their sizes, _AddrObjTa
bleSize and _MaxHashTableSize respectively)must be found by
manually examining the tcpip.sys portable executable.

Once these symbols are known, the memory analysis tool

uses the PDB file for tcpip.sys to find the location of these
symbolswithin the tcpip.sysexecutable resident in thememory
dump. Within the PDB file, there are two streams used to
calculate the location of the symbols. The first, provides a list of
the symbols along with their offsets. The second, is an adjust-
ment for these offsets. This second stream is a tablewhere each
entryhas twovalues. Thefirst is a virtual address (relative to the
image base address) and the second is the sumof the offset and
the relative virtual address of the data section (found in the
section stream). Once the adjusted locations of these symbols
within the portable executable resident in memory is known,

thememory tool extracts the local and remote socket addresses
as well as the process they are associated with.

4. Analysis of results

Theanalysis tooldevelopedfollowingtheprocess inFig. 1parses
a memory dump (with associated page files and potentially
memory-mapped files) from aWindows NT family of operating
systems to provide information on user accounts, theWindows
Registry, and running processes. The tool outputs system,

process, registry, and user information in a standalone tool that

runs without API calls or high level language interpreters.
To test the tool’s functionality, memory dumps are

generated from 32-bit Windows XP with PAE enabled and
disabled, from 32-bit Windows Vista with PAE enabled, and
from 64-bit Windows 7. The output is then compared with
output from Microsoft’s netstat and SysInternals psinfo,
pslist, logonsessions, handles, and listdlls utilities
(Russinovich). The system information examined includes
operating system version, number of processors, and number
of processes. The process information examined includes
process creator, files opened, registry keys accessed, modules

loaded, and network activity. Several application programs
are started on the machine including Internet Explorer, Word,
PowerPoint, Visual Studio, Calculator, Kernel Debugger, and
two command line shells. One of the command line shells is
hidden by the FUTo rootkit (Silberman, 2006).

Test results demonstrate that the memory analysis tool
provides the same or equivalent information to the infor-
mation provided by the SysInternal utilities. In addition, in
the case of Windows XP, the Windows-agnostic tool
provides the same information provided by Volatility (since
Volatility is limited to Windows XP, it could not be tested on

Windows Vista or Windows 7). In all cases, the operating
system version, processor count, process count, user IDs,
loaded modules, files, registry keys, and network activity
matched.

While these tests were performed only on a subset of the
Windows NT operating systems, it should be straightforward
to extend the Windows-agnostic tool to all Windows NT
operating systems. There is, however, one issue. Since the
names of structures are still hard-coded, any changes to the
names of the variables would require changing the memory
analysis tool. For instance, the memory analysis tool assumes

there is a structure called _EPROCESS that has process infor-
mation and that there is a structure contained within
_EPROCESS called DirectoryTableBase that contains the page
directory base for a process. If in a future version of
aWindows operating system, Microsoft changes the names of
the structures, the tool will have no way of knowing what the
newnames are. In fact, this did occur whenMicrosoft released
Windows 7 and changed the method of associating an object
type with an object from a pointer within the _OBJEC-
T_HEADER record to an index into the Object Type Array
pointed to by obpObjectTypeTable.

Data structure names have also changed in each operating

system release of tcpip.sys.While in the case of kernel objects,
the new structure names are generally published making any
required coding changes straightforward, this is not the case
for tcpip.sys. Changes in tcpip.sys are not publically available
and can only be found by reverse engineering the new system
module. This means that extracting network activity across
operating systems continues to require manual operating
system specific coding.

5. Conclusions and future work

By incorporating the debug structures and PDB files, memory
analysis tools can handle a much larger range of operating

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) S 4 8eS 5 6 S55

systems. Tests performed on 32-bit Windows XP with and

without physical address extensions, 32-bit Windows Vista
with physical address extensions enabled and 64-bitWindows
7 show that Windows agnostic memory analysis tools can
provide the same level of detail as the current state of
Windows specific memory analysis tools with one exception.
Given the degree that the data structures in tcpip.sys change
from operating system version to operating system version,
memory analysis tools need to remain operating system
specific for network communications.

While greater understanding of the PDB file structures is
needed, these same techniques should extend to searching for

malware in the portable executables found inmemory dumps.
With this additional functionality, even memory-resident
malware becomes visible to the forensic investigator. This
provides access to a two new classes of malware: (1) malware
that is downloaded only after a stub is executed and (2) mal-
ware that is packed (encrypted) and only unpacks (decrypts)
when it is loaded into memory.

Finally, there is no reason that these techniques have to
be limited to memory dumps. By incorporating them either
into system modules or into an underlying hypervisor, these
tools can function as sensors for intrusion detection

systems.

r e f e r e n c e s

Barbarosa E. (Opcode), Finding some non-exported kernel
variables in Windows XP, http://www.rootkit.com/vault/
Opc0de/GetVarXP.pdf.

Betz C. memparser, http://sourceforge.net/projects/memparser;
2005.

Carvey H. Windows forensic analysis. Syngress; 2007.

Digital Forensics Research Workshop. DFRWS 2005 forensic
challenge e memory analysis, http://www.dfrws.org/2005/
challenge/index.shtml; 2005. Accessed February 19, 2010.

Dolan-Gavitt B. Forensic analysis of the windows registry in
memory. In: Proceedings of the 2008 Digital Forensic Research
Workshop (DFRWS); 2008. p. 26e32.

Ionescu A. Getting Kernel variables from KdVersionBlock, Part2,
http://www.rootkit.com/newsread.php?newsid¼153.

Mandiant. Memoryze, http://www.mandiant.com/software/
memoryze.htm. Accessed August 15, 2009.

Microsoft Support. Description of .PDB and of the .DBG files,
http://support.microsoft.com/kb/121366.

Microsoft Windows Hardware Developer Central. Microsoft
portable executable and common object file format
specification, http://www.microsoft.com/whdc/system/
platform/firmware/PECOFF.mspx.

Prosise C, Mandia K, Pepe M. Incident response & computer
forensics. 2nd ed. McGraw-Hill/Osborne; 2003.

Russinovich M, Solomon D. Microsoft Windows internals. 4th ed.
Microsoft Press; 2005.

Russinovich M. SysInternals suite, http://technet.microsoft.com/
en-us/sysinternals/bb842062.aspx. Accessed August 15, 2009.

Schreiber S. Undocumented Windows 2000 secrets:
a programmer’s cookbook. Addison Wesley, http://www.
informit.com/articles/article.aspx?p¼22685; 2001a.

Schreiber S. Undocumented Windows 2000 secrets:
a programmer’s cookbook. Addison Wesley, http://
undocumented.rawol.com/; 2001b.

Schuster A. PTfinder, http://computer.forensikblog.de/en/2006/
03/ptfinder_0_2_00.html; March 2, 2006a.

Schuster A. Searching for processes and threads in Microsoft
Windows memory dumps. In: Proceedings of the 2006 Digital
Forensic Research Workshop (DFRWS); 2006b. p. 10e6.

Silberman P. FUTo, http://www.uninformed.org/?v¼3&a¼7&t¼
sumry; Jan, 2006.

Walters A, Petroni N. Volatools: integrating volatile memory
forensics into the digital investigation process. Blackhat Hat
DC 2007, www.blackhat.com/presentations/bh-dc./bh-dc-07-
Walters-WP.pdf; 2007.

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) S 4 8eS 5 6S56

	Windows operating systems agnostic memory analysis
	Introduction
	Background
	Methodology
	Determining the operating system
	Mapping virtual addresses to physical addresses
	Operating system structures
	Finding and instantiating processes in memory
	Finding and instantiating configuration information in memory
	Finding and instantiating network activity in memory

	Analysis of results
	Conclusions and future work
	References

