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In many real-world applications, sensitive information must be kept in log files on an
untrusted machine. In the event that an attacker captures this machine, we would like to
guarantee that he will gain little or no information from the log files and to limit his ability to
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1. INTRODUCTION

1.1 A Description of the Problem

We have an untrusted machine, 8, which is not physically secure or
sufficiently tamper-resistant to guarantee that it cannot be taken over by
some attacker. However, this machine needs to be able to build and
maintain a file of audit log entries of some processes, measurements,
events, or tasks.

With a minimal amount of interaction with a trusted machine, 7, we
want to make the strongest security guarantees possible about the authen-
ticity of the log on 8. In particular, we do not want an attacker who gains
control of 8 at time t to be able to read log entries made before time t, and
we do not want him to be able to alter or delete log entries made before
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time t in such a way that his manipulation will be undetected when 8 next
interacts with 7.

It is important to note that 8, while “untrusted,” isn’t generally expected
to be compromised. However, we must be able to make strong statements
about the security of previously generated log entries even if 8 is compro-
mised.

In systems where the owner of a device is not the same person as the
owner of the secrets within the device, it is essential that audit mecha-
nisms be in place to determine if there has been some attempted fraud.
These audit mechanisms must survive the attacker’s attempts at undetect-
able manipulation. This is not a system to prevent all possible manipula-
tions of the audit log; this is a system to detect such manipulations after
the fact.

Applications for this sort of mechanism abound. Consider 8 to be an
electronic wallet—a smart card, a calculator-like device, a dongle on a
PC—that contains programs and data protected by some kind of tamper
resistance. The tamper resistance is expected to keep most attackers out,
but it is not 100% reliable [Anderson and Kuhn 1996; McCormac 1996].
However, the wallet occasionally interacts with trusted computers (7) in
banks. We would like the wallet to keep an audit log of both its actions and
data from various sensors designed to respond to tampering attempts.
Moreover, we would like this log to survive successful tampering, so that
when the wallet is brought in for inspection it will be obvious that the
wallet has been tampered with.

There are other examples of systems that could benefit from this proto-
col:

—A computer that logs various kinds of network activity needs to have log
entries of an attack undeletable and unalterable, even in the event that
an attacker takes over the logging machine over the network.1

—An intrusion-detection system that logs the entry and exit of people into
a secured area needs to resist attempts to delete or alter logs, even after
the machine on which the logging takes place has been taken over by an
attacker [Schneier and Kelsey 1999].

—A secure digital camera needs to guarantee the authenticity of pictures
taken, even if it is reverse-engineered sometime later [Kelsey et al. 1996].

—A computer under the control of a marginally trusted person or entity
needs to keep logs that can’t be changed after the fact, despite the
intention of the person in control of the machine to “rewrite history” in
some way. This also comes up when a secure coprocessor, or “dongle,” is
attached to an untrusted computer [Kelsey and Schneier 1996; Schneier
and Kelsey 1997b].

1In Stoll [1989], Cliff Stoll attached a printer to a network computer for just this purpose.
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—A computer that is keeping logs of confidential information needs to keep
that information confidential even if it is taken over for a time by some
attacker.

—Mobile computing agents could benefit from the ability to resist alter-
ation of their logs even when they’re running under the control of a
malicious adversary [Riordan and Schneier 1998].

1.2 Limits on Useful Solutions

A few moments’ reflection will reveal that no security measure can protect
the audit log entries written after an attacker has gained control of 8. At
that point, 8 will write to the log whatever the attacker wants it to write.
All that is possible is to refuse the attacker the ability to read, alter, or
delete log entries made before he compromised the logging machine.

If there is a reliable, high-bandwidth channel constantly available be-
tween 7 and 8, then this problem won’t come up. 8 will simply encrypt
each log entry as it is created and send it to 7 over this channel. Once logs
are stored by 7, we are willing to trust that no attacker can change them.

Finally, no cryptographic method can be used to actually prevent the
deletion of log entries: solving that problem requires write-only hardware
such as a writable CD-ROM disk, a WORM disk, or a paper printout. The
only thing these cryptographic protocols can do is to guarantee detection of
such deletion, and that is assuming 8 eventually manages to communicate
with 7.

These three statements define the limits of useful solutions to this
problem. We are able to make strong statements only about log entries 8
made before compromise; we cannot prevent deletion of log entries stored
in read/write media, and our audit log protocol is interesting only when
there is no communications channel of sufficient reliability, bandwidth, and
security to simply continuously store the logs on 7.

In essence, this technique is an implementation of an engineering
tradeoff between how “on-line” 8 is and how often we expect 8 to be
compromised. If we expect 8 to be compromised very often—once a minute,
for example—then we should send log entries to 7 at least once or twice
every minute; hence, 8 will need to be on-line nearly all the time. In many
systems, 8 is not expected to be compromised nearly as often, and is also
not on-line nearly as continuously. Therefore, we only need 8 to communi-
cate log entries to 7 infrequently, at some period related to the frequency
with which you expect that 8 may be compromised. The audit log tech-
nique in our paper enables this trade-off. It provides a “knob” that the
system architect can adjust based on his judgment of this trade-off;
furthermore, the knob can be adjusted during the operation of the system
as expectations of the rate of compromise change.
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1.3 Organization of This Paper

The remainder of this paper is divided into sections as follows: In Section 2,
we discuss notation and tools. In Section 3, we present our general scheme.
Then, in Section 4, we discuss some extensions and variations on the
scheme. In Section 5, we discuss uses of this system as a forensic tool.
Finally, in Section 6, we provide a summary of what we’ve done and
interesting directions for further research in this area.

2. NOTATION AND TOOLS

In the remainder of this paper, we will use the following notation:

(1) IDx represents a unique identifier string for an entity, x, within this
application.

(2) PKEPKx~K! is the public-key encryption, under x ’s public key, of K,
using an algorithm such as RSA [Rivest et al. 1978] or ElGamal
[ElGamal 1985].

(3) SIGNSKx~Z! is the digital signature, under x ’s private key, of Z, using
an algorithm such as RSA or DSA [NIST 1994].

(4) EK0~X! is the symmetric encryption of X under key K0, using an
algorithm such as DES [NBS 1977], IDEA [Lai et al. 1991], or Blowfish
[Schneier 1994].

(5) MACK0~X! is the symmetric message authentication code (HMAC or
NMAC [Bellare et al. 1996]), under key K0, of X.

(6) hash~X! is the one-way hash, using an algorithm such as SHA-1 [NIST
1993] or RIPE-MD [Dobbertin et al. 1996], of X.

(7) X, Y represents the concatenation of X with Y.

Descriptions of most of these algorithms are in Stinson [1995], Schneier
[1996], and Menezes et al. [1997].

Note that all authenticated protocol steps in this paper should include
some nonce identifying the specific application, version, protocol, and step.
This nonce serves to limit damaging protocol interactions, either accidental
or intentional [Anderson 1995; Kelsey et al. 1998]. In our protocols, we will
use p to represent this unique step identifier.

Additionally, many of the protocols require the two parties to establish a
secure connection, using an authentication and key-agreement protocol
that has perfect forward secrecy, such as authenticated Diffie-Hellman
[Diffie et al. 1992]. The purpose of this is for the two parties to prove their
identity to each other, and to generate a shared secret with which to
encrypt subsequent messages in the protocol.

In the remainder of this paper, we will use the following players:
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(1) 7 is the trusted machine. It may typically be thought of as a server in a
secure location, though it may wind up being implemented in various
ways: a tamper-resistant token, a bank ATM, etc.

(2) 8 is the untrusted machine, on which the log is to be kept.

(3) 9 is a moderately trusted verifier, which will be trusted to review
certain kinds of records on a log, but not trusted with the ability to
change records. Note that 9 must interact with 7 in order to access
these records.

In this paper, we assume that 8 has both short-term and long-term
storage available. The long-term storage will store the audit log, and we
assume that it is sufficiently large that filling it up is not a problem. We
assume that 8 can irretrievably delete information held in short-term
memory, and that this is done each time a new key is derived. We also
assume that 8 has some way of generating random or cryptographically
strong pseudorandom values. Finally, we assume the existence of several
cryptographic primitives, and a well-understood way to establish a secure
connection across an insecure medium.2 Methodologies for all of these are
described in great detail elsewhere—see Stinson [1995], Schneier [1996],
and Menezes et al. [1997].

3. A DESCRIPTION OF OUR METHOD

Our system leverages the fact that the untrusted machine creating the
logfile initially shares a secret key with a trusted verification machine.
With this key, we create the logfile.

The security of our logfile comes from four basic facts:

(1) The log’s authentication key is hashed, using a one-way hash function,
immediately after a log entry is written. The new value of the authen-
tication key overwrites and irretrieveably deletes the previous value.

(2) Each log entry’s encryption key is derived, using a one-way process,
from that entry’s authentication key. This makes it possible to give
encryption keys for individual logs out to partially trusted users or
entities (so that they can decrypt and read entries), without allowing
those users or entities to make undetectable changes.

(3) Each log entry contains an element in a hash chain that serves to
authenticate the values of all previous log entries [Haber and Stornetta
1991; Schneier and Kelsey 1997a]. It is this value that is actually
authenticated, which makes it possible to remotely verify all previous
log entries by authenticating a single hash value.

2This secure connection could use any of several established protocols—IPSec, SSL—or a
proprietary system.
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(4) Each log entry contains its own permission mask. This permission
mask defines which log entries can be accessed by partially trusted
users. Different partially trusted users can be given access to different
kinds of entries. Because the encryption keys for each log entry are
derived partly from the log entry type, lying about what permissions a
given log entry has ensures that the partially trusted user simply never
gets the right key.

3.1 Log Entry Definitions and Construction Rules

All entries in the log file use the same format, and are constructed
according to the following procedure:

(1) Dj is the data to be entered in the jth log entry of IDlog. The specific
data format of D is not specified in our scheme: it must merely be
something that the reader of the log entries will unambiguously under-
stand, and that can be distinguished in virtually all cases from random
gibberish. (If we are dealing with raw binary data here, we may add
some structure to the data to make detection of garbled information
likely, though this is seldom going to be important.)

(2) Wj is the log entry type of the jth log entry. This type serves as a
permissions mask for 9; 7 will be allowed to control which log entry
types any particular 9 will be allowed to access.

(3) Aj is the authentication key for the jth entry in the log. This is the core
secret that provides all of this scheme’s security. Note that 8 must
generate a new A0 before starting the logfile; A0 can be given to 8 by 7

Fig. 1. Adding an entry to the log.
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at startup, or 8 can randomly generate it and then securely transmit it
to 7.

(4) Kj 5 hash~ ‘‘Encryption Key’’, Wj, Aj!. This is the key used to encrypt
the jth entry in the log. Note that Wj is used in the key derivation to
prevent the partially trusted verifier, 9, from getting decryption keys
for log entry types to which he is not permitted access.

(5) Yj 5 hash~Yj21, EKj~Dj!, Wj!. This is the hash chain that we maintain
to allow partially trusted users, 9s, to verify parts of the log over a
low-bandwidth connection with the trusted machine, 7. Yj is based on
EKj~Dj! instead of Dj so that the chain can be verified without knowing
the log entry. At startup, Y21 is defined as a 20-byte block of binary
zeros.3

(6) Zj 5 MACAj~Yj!.

(7) Lj 5 Wj, EKj~Dj!, Yj, Zj, where Lj is the jth log entry.

(8) Aj11 5 hash~ ‘‘Increment Hash’’, Aj!.

Note that when Aj11 and Kj are computed, the previous Aj and Kj21

values are irretrieveably destroyed; under normal operation, there are no
copies of these values kept on 8. Additionally, Kj is destroyed immediately
after use in Step (4). (Naturally, an attacker will probably store Aj values
after he takes control of 8.)

The above procedure defines how to write the jth entry into the log, given
Aj21, Yj21, and Dj. Figure 1 gives an illustration of this process.

If an attacker gains control of 8 at time t, he will have a list of valid log
entries, L1, L2, . . . , Lt, and the value At11. He cannot compute At2n for
any n # t, so he cannot read or falsify any previous entries. He can delete
a block of entries (or the entire log file), but he cannot create new entries to
replace the ones he deleted, regardless of whether he deleted a block of
entries in the middle of the log or a block of entries at the end of the log.
The next time 8 interacts with 7, 7 will realize that entries have been
deleted from the log and that (1) 8 may have committed some invalid
actions that have not been properly audited and (2) 8 may have committed
some valid actions whose audit record has been deleted.4

Even if the attacker does not delete entries, the audit system should
include entries that point to a successful intrusion by the attacker. Again,
since the attacker cannot read past entries, he will have no way of knowing
if his intrusion was noted by the log system or not.

3There is no security reason for this; it has to be initialized as something.
4If the attacker gains control of 8 before Step (8), he can learn At. In this case, the tth log
entry is not secured from deletion or manipulation.
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3.2 Startup: Creating the Logfile

In order to start the logfile, 8 must irrevocably commit A0 to 7. Once A0

has been committed to, there must be a valid log on 8, properly formed in
all ways, or 7 will suspect that someone is tampering with 8.

In the simplest case, 7 is able to reliably receive a message (but perhaps
not in realtime) from 8. 8 knows 7 ’s public key, and has a certificate of
her own public key from 7. The protocol works as follows:

(1) 8 forms:
K0, a random session key.
d, a current timestamp.
d1, timestamp at which 8 will time out.
IDlog, a unique identifier for this logfile.
C8, 8 ’s certificate from 7.
A0, a random starting point.
X0 5 p, d, CU, A0.

She then forms and sends to 7:
M0 5 p, ID8, PKEPK7

~K0!, EK0~X0, SIGNSK8
~X0!!,

where p is the protocol step identifier.

(2) 8 forms the first log entry, L0, with W0 5 LogfileInitializationType
and D0 5 d, d1, IDlog, M0. Note that 8 does not store A0 in the clear,
as this could lead to replay attacks: an attacker gets control of 8 and
forces a new audit log with the same A0. 8 also stores hash~X0! locally
while waiting for the response message.

(3) 7 receives and verifies the initialization message. If it is correct (i.e., it
decrypts correctly, 8 ’s signature is valid, 8 has a valid certificate),
then 7 forms:

X1 5 p, IDlog, hash~X0!.

7 then generates a random session key, K1, and forms and sends:
M1 5 p, ID7, PKEPK8

~K1!, EK1~X1, SIGNSK7
~X1!!.

(4) 8 receives and verifies M1. If all is well, then 8 forms a new log entry,
Lj, with Wj5ResponseMessageType and Dj 5 M1. 8 also calculates
A1 5 hash~ ‘‘Increment Hash’’, A0!.
If 8 doesn’t receive M1 by the time-out time d1, or if M1 is invalid, then
8 forms a new log entry with W1 5 AbnormalCloseType and D1 5
the current timestamp and the reason for closure. The log file is then
closed.

Depending on the application, we may or may not allow 8 to log anything
between the time it sends M0 and the time it receives M1 (or by the
time-out time). In high-security applications, we might not want to take the
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chance that there are any problems with 7 or the communications. In other
applications, it might be allowable for 8 to perform some actions while
waiting for 7 to respond.

The purpose of writing the abort-startup message is simply to prevent
there ever being a case where, due to a communications failure, 7 thinks
there is a logfile being used even though none exists. Without this protec-
tion, an attacker could delete 8 ’s whole logfile after compromise, and claim
to simply have failed to receive M1 during the startup. In implementations
where 8 waits for the response message before writing any log entries, M1

will be the second message written in the log as well as the last. Otherwise,
when 7 sees this message, he will believe either that 8 didn’t receive the
response message, or that 8 was compromised before the response mes-
sage.

3.3 Closing the Logfile

Closing the logfile involves three operations: Writing the final-record
message, Df (the entry code is NormalCloseMessage and the data is a
timestamp); irretrieveably deleting Af and Kf; and (in some implementa-
tions) actually closing the file. Note that after the file has been properly
closed, an attacker who has taken control of 8 cannot make any alteration
to the logfile without detection. Nor can an attacker delete some entries
(and possibly add others) and then create a valid close-file entry earlier in
the log. Finally, the attacker cannot delete the whole log file, because of the
earlier interaction between 8 and 7. Any of these changes will be detected
when 7 sees the final logfile.

3.4 Validating the Log

When 7 receives the complete and closed log, he can validate it using the
hash chain and Zf (since it already knows D0). He can also derive all the
encryption keys used, and thus read the whole audit log.

3.5 Verification, Verifiers, and Querying Entries

At times, a moderately trusted person or machine, called 9, may need to
verify or read some of the logfile’s records while they are still on 8. This is
made possible if 7 has sent M1 to 8 (see Section 3.3), and if 9 has a
suitable channel available to and from 8. Note that this can occur before 7
has received a copy of the log from 8, and before 8 has closed the logfile.

(1) 9 receives a copy of the audit log, L0, L1, L2, . . . , Lf, where f is the
index value of the last record, from 8. Note that 8 does not have to
send 9 a complete copy of the audit log, but it must send 9 all entries
from L0 through some Lf, including the entry with M1.
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(2) 9 goes through the hash chain in the log entries (the Yi values),
verifying that each entry in the hash chain is correct.

(3) 9 establishes a secure connection with 7.

(4) 9 generates a list of all the log entries she wishes to read, from 0 to n.
This list contains a representation of the log entry type and index of
each entry to which the verifier is requesting access. (Typically, only
some log entry types will be allowed, in accordance with 9 ’s permis-
sion mask.) This list is called Q@0..n#, where Qi 5 j, Wj.

(5) 9 forms and sends to 7:
M2 5 p, IDlog, f, Yf, Zf, Q@0..n#.

(6) 7 verifies that the log has been properly created on 8, and that 9 is
authorized to work with the log. 7 knows A0 so he can calculate Af;
this allows him to verify that Zf 5 MACAf~Yf!. If there is a problem, 7
sends the proper error code to 9 and records that there is a problem
with IDlog on 8 or a problem with 9.

(7) If there are no problems, 7 forms a list, R@1..n#, of responses to the
requests in Q. Each entry in Q gets a corresponding entry in R: either
giving the verifier the decryption key for that record, or else giving it
an error code describing the reason for the refusal of access. (Typical-
ly, this will be because the log entry type isn’t allowed to be read by
this verifier.) Note that 7 computes these keys based on the log entry
type codes given. If 9 provides incorrect codes to 7, the keys will be
incorrect and 9 will be unable to decrypt the log entries. Additionally,
9 will not be able to derive the right key from the key he has been
given.

(8) 7 forms and sends to 9:
M3 5 p, R@0..n#.

(9) 9 is now able to decrypt and read, but not to change, the log entries
whose keys were sent in M4. 9 is also convinced that the log entries
are authentic, since a correct MAC on any hash-chain value is essen-
tially a MAC on all previous entries as well.

(10) 9 deletes the key it established with 7 in Step (3). This guarantees
that an attacker cannot read 8 ’s logfile if 9 is compromised later.

Of course, if 9 is compromised at the start of this protocol with 7, it will
be able to read 8 ’s logfile. Presumably, 9 will have its own authenticated
logfiles and will be regularly audited to reduce the likelihood of this
problem occurring.
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4. APPLICATIONS AND EXTENSIONS

4.1 Abnormal Shutdowns

In some systems, abnormal shutdowns (e.g., caused by a system crash or
power outage) are a normal part of operations. The mechanism for closing
the log file doesn’t work in this situation—it will be impossible to distin-
guish the log of a system that crashed at 12:10 PM and the log of a system
that was taken over at 2:00 PM, and then had all records entered since
12:10 PM truncated.

To deal with this, we change our routine after writing a log entry
slightly: After we compute the new Aj key value, we generate a special
Abnormal Shutdown message and store it in nonvolatile storage. At the
same time as we write the next log entry, we irretrieveably delete this
message from nonvolatile storage. (It is critical that it be irretrieveably
deleted; otherwise, an attacker can silently truncate the log.)

When 8 “wakes up” after a system crash, it copies the Abnormal
Shutdown message to the log file. An attacker who takes 8 over is able to
do the same thing, but is not able to delete any log entries in this way. (He
can always delete the log entries, but he cannot do so without the fact being
detected later.)

Note that in real-world systems, there will probably not be an atomic
operation to delete the previous Abnormal Shutdown message, write the
next log entry, and generate and store a new Abnormal Shutdown message.
However, this can be made to happen in a very short time window, so that
the likelihood of a system crash during the operation is very small.

Real-world systems may also have to deal with the difficulty of really
deleting data from some nonvolatile media. If this is a major issue, we may
end up storing these Abnormal Shutdown messages encrypted, and also
storing the keys. We can then attempt to overwrite the stored key many
times in succession after each new log entry is written.

4.2 An Off-Line Variant

In the protocols and message formats given in Section 3.3, we left the
specifics of the timing of M1 from 7 to 8 open. This allows us to create a
completely off-line variant using couriers as the only communications
medium. Thus, M0 and M1 can be sent via courier on diskettes. If a voice
channel is available, someone can also read the hash of M0 from 8 over the
line for additional security.

4.3 Voice Line Only

It is also possible to reduce the protocols for starting up a log file and to
verify messages that can be sent over a voice line directly, either by reading
them over the line or by using DTMF tones. For the startup protocol
(Section 3.2), IDU, IDlog, hash~M0! must be read over the line. In practice,
this can probably be reduced down to 22 digits (with the SHA-1 hash
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reduced to only 20 digits).5 This will provide resistance against practical
attacks that do not involve compromise of 8 before the logfile is created.
For the log-entry protocol (Section 3.1), we must send the last entry of the
hash chain (about 40 digits) and 20 digits of the MAC. This would be
impractical for a human to handle via a phone keypad, but might be done
by voice-recognition, perhaps involving some additional correction digits.

This variant might be useful for applications in which some piece of
equipment doesn’t have any direct access to communications with the
outside world, but which has a keyboard and display. A human user using a
telephone, cellphone, or satellite phone could then start up the audit logs.
For example, we might have the processor inside a vending machine
maintain such logs. It might be useful to allow a user to verify the contents
of the logfile with a personal digital assistant (such as a PalmPilot) and a
cellphone.

4.4 Cross-Peer Linkages: Building a Hash Mesh

If there are multiple instances of 8 executing this same protocol, they can
cross-link their audit logs with each other. In applications where there are
many instances of 7 and with different instances of 8 authenticating their
log files with different instances of 7, this cross-linking can make back-
alteration to audit logs impractical, even with one or more compromised
instances of 8 or even (in some cases) 7. This will also decrease the
freedom of any compromised 8 machine to alter logs, because it keeps
having to commit to its log’s current state on other uncompromised ma-
chines.

This cross-authentication is done in addition to the rest of the scheme as
described above. To cross-authenticate between two untrusted machines,
80 and 81, we execute the following protocol.

(1) 80 and 81 exchange identities and establish a secure connection.

(2) 80 forms and enters into its own log an entry, in position j, with:
Wj 5 “Cross Authentication Send”,
Dj 5 “Cross Authentication Send”, ID81, d0,

where d0 is 80’s timestamp.

(3) 80 forms and sends to 81:
M4 5 p, Yj, d0.

Recall that Yj is the current value of 80’s hash chain.

(4) 81 receives this message, and verifies that the timestamp is approxi-
mately correct. If so, 81 writes a log entry in position i with:

Wi 5 “Cross Authentication Receive”,
Di 5 “Cross Authentication Receive”, ID80, d0, Yj.

5We get moderate resistance to targeted collision attacks, but not to free collision atacks, with
messages of 20 decimal digits.
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Then 81 forms and sends to ID80

M5 5 p, Yi.

If 81 doesn’t agree with the timestamp, it writes a log entry in position
i with:

Wi 5 “Cross Authentication Receive Error,
Di 5 “Cross Authentication Receive Error”, ID80, d0, d1, Yj,

where d1 is 81’s timestamp. Then 81 forms and sends to 80:
M6 5 p, Yi, ErrorCode.

The protocol is then terminated.

(5) 80 receives M6 and processes it. If there was no error in receiving M6,
and if M6 was not an error message, then 80 writes an entry to the log
at position j 1 1 with:

Wj11 5 “Cross Authentication Reply”,
Dj11 5 “Cross Authentication Reply”, ID81, Yi.

If it was an error, or if the expected message doesn’t arrive before
time-out, then 80 writes an entry to the log at position j 1 1 with:

Wj11 5 “Cross Authentication Reply Error”,
Dj11 5 “Cross Authentication Reply Error”, ID81, ErrorCode.

If mutual cross-peer linking is required, 81 could then initiate this same
protocol with 80.

Cross linkages are a way to interweave the audit logs of different 8s, so
that it would be harder to erase the history of a particular 8 i. For example,
consider a network of electronic wallets: smart cards, PC-Cards), PalmPi-
lot-like PDAs, etc. The wallets, 8s, would each keep their own audit log,
and download it to a banking terminal, 7, whenever the two interacted.
(Presumably, the wallets would only interact with the banking terminals
occasionally: to upload or download money, as part of a regular audit cycle,
etc.)

A wallet-to-wallet transfer protocol could make use of this system of
cross-peer linkages, and exchange audit entries every time two wallets
interacted. Pieces of the resulting hash mesh would be downloaded to 7
whenever a wallet interacted with 7. Even if a particular wallet, 80, did
not interact with 7 for a long time, the other wallets that it did interact
with would interact with 7, allowing 7 to at least partially reconstruct
what happend to 80. And if the tamper-resistance in 80 was defeated, the
other entries in the hash lattice would help the bank reconstruct any
fraudulent transactions and trace what had happened.

This system of cross-linking audit trails also has applications where
multiple audit trails are on the same physical device. For example, a smart
card might run several different commerce applications, or a firewall might
run several different security applications. In this situation, it would make
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sense for each application to keep its own audit log (the hardware itself
might keep a separate audit log), and that they would all interact using the
hash lattice protocol. In this way, the interacting audit logs could provide
evidence even in the event of one audit log being altered or destroyed.

4.5 Replacing 7 with a Network of Insecure Peers

We can run this whole scheme using multiple untrusted machines, 80,
81, ..., 8n, to do all the tasks of 7. Since 7 is a huge target, this could
potentially increase security. Basically, this involves an extension of the
hash lattice ideas from the previous section.

Let 80 and 81 both be untrusted machines, with 80 about to start an
audit log. 81 will serve as the trusted server for this audit log.

(1) 80 and 81 establish a secure connection.

(2) 80 forms:
d, a current timestamp.
d1, timestamp at which 80 will time out.
IDlog, a unique identifier for this logfile.
A0, a random starting point.
ID80, ID81 are unique identifiers for U0 and U1, respectively.
X0 5 p, ID80, ID81, d, IDlog, A0.

She then forms and sends to 81:
M0 5 X0.

(3) 80 forms the first log entry with:
W0 5 LogfileInitializationType,
D0 5 d, d1, IDlog, M0.

Again, 80 does not store A0 in the clear, to protect against a replay
attack. 80 also calculates and stores hash~X0! locally while waiting for
the response message from 81.

(4) 81 receives and verifies that M0 is well formed. If it is, then 81 forms:
X1 5 p, IDlog, hash~X0!.

81 then forms and sends to 80:
M1 5 X1.

(5) 80 receives and verifies M1. If all is well, then 80 forms a new log entry
with:

W0 5 ResponseMessageType,
Dj 5 M1.

If 80 doesn’t receive M1 by the time-out time d1, or if M1 is invalid,
then 80 forms a new log entry with:

W0 5 AbnormalCloseType,
Dj 5 the current timestamp and the reason for closure.
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The log file is then closed.

One potential issue here is that an attacker may compromise 81,
allowing the wholesale alteration of entries in the logfile. There are two
imperfect solutions to this:

80 should log the same data in several parallel logfiles, with each logfile
using a different untrusted server as its trusted server.

80 may commit, in the first protocol message, to a number N that will be
the index number of its final log entry. 81 then computes AN and K0..N,
stores these values, and deletes A0. If an attacker compromises 81, he
will learn what he needs to read and to close the logfile on 80, but not
what he needs to alter any other log entries.

It is worth noting that these measures do not protect the secrecy of a
logfile once an attacker has compromised both 80 and 81. An improved
solution is for 80 to use a secret-sharing scheme to store A0 among n
untrusted machines, any m of which could then recover it.

Another solution is for 80 to keep parallel log files in the manner
described above on n machines, but generating (for each log entry that
needed to be kept secret) n 2 1 random bit strings, Pi of length equal to
that of Dj. 80 then stores Dj Q P0 Q P1 Q . . . Q PN22 in one logfile, and
each pad value in another logfile.

In practice, these kinds of distributed schemes seem to work better for
authenticating the log entries than for protecting their secrecy.

This kind of redundancy has considerable benefit in applications where
even the trusted computers are not very trusted: e.g., electronic wallet
applications where the 8s are customer cards and the 7s are merchant
terminals, or vending applications where the 8s are customer cards and
the 7s are vending machines (or parking garage machines, or public
transportation terminals, or pay telephones) that may be in remote loca-
tions. It also can serve as an extra measure of security in applications
where 7s are trusted.

5. USING THE AUDIT LOG AS A FORENSIC TOOL

The primary benefit of our complicated protocol for generating audit logs
and audit-log entries is that it aids in forensic analysis [Wilding 1997;
Schneier and Kelsey 1999]. The following discussion assumes that audit log
entries detect an intrusion (record the opening of a door, removal of a
tamper-resistant coating, access of a normally secret file, and so on). If an
attacker can gain control of 8 without triggering an alarm condition and
associated audit-log entry, then this system cannot help.

Audit logs are useless unless someone reads them. Hence, we first
assume that there is a software program whose job it is to scan all audit
logs and look for suspicious entries. In our system, there are two types of
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suspicious entries. First, there are valid entries that indicate an intrusion
(e.g., any of the alarm conditions mentioned in the previous paragraph).
Second, there are invalid entries that indicate that the audit log has been
tampered with. Since an attacker who gains access to a device with this
type of logging has only two options—leave the incriminating log entries in
the log or delete them and ensure that the deletion will be noticed—one of
these two suspicious entry types will indicate a break-in.

After that, the details are completely dependent on the particular log
entries. If there is an invalid entry, one can immediately assume that all
entries afer the last valid one are suspect and that all entries before the
first invalid one are genuine.

6. SUMMARY AND CONCLUSIONS

Many security systems, whether they protect privacy, secure electronic-
commerce transactions, or use cryptography for something else, do not
directly prevent fraud. Rather, they detect attempts at fraud after the fact,
provide evidence of that fraud in order to convict the guilty in a court of
law, and assume that the legal system will provide a “back channel” to
deter further attempts. We believe that fielded systems should recognize
this fundamental need for detection mechanisms, and provide audit capa-
bilities that can survive both successful and unsuccessful attacks. Addition-
ally, an unalterable log should make it difficult for attackers to cover their
tracks, meaning that the victims of the attack can quickly learn that their
machine has been attacked, and take measures to contain the damage from
that attack. The victims could then revoke some public-key certificates,
inform users that their data may have been compromised, wipe the ma-
chine’s storage devices and restore it from a clean backup, or improve
physical and network security on the machine to prevent further attacks.

In this paper, we have presented a general scheme that allows keeping
an audit log on an insecure machine, so that log entries are protected even
if the machine is compromised. We have shown several variations of this
scheme, including one that is suitable for multiple electronic wallets
interacting with each other but not connected to a central secure network.
This scheme, combined with physical tamper-resistance and periodic in-
spection of the insecure machines, could form the basis for highly trusted
auditing capabilities. Our technique is strictly more powerful than simply
periodically submitting audit logs and log entries to a trusted time-
stamping server [Haber and Stornetta 1991]: the per-record encryption
keys and permission masks permit selective disclosure of log information,
and there is some protection against denial-of-service attacks against the
communications link between the insecure machine and the trusted server.

The primary limitation of this work is that an attacker can seize control
of an insecure machine and simply continue creating log entries, without
trying to delete or change any previous log entries. In any real system, we
envision log entries for things like “Tamper-resistance breach attempt”
that any successful attacker will want to remove. Even so, the possibility of
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an unlogged successful attack makes it impossible to be certain that a
machine was uncompromised before a given time. A sufficiently sneaky
attacker might even create log entries for a phony attack hours after the
real, unlogged, compromise.

In future work, we intend to expand this scheme to deal with the
multiparty situation more cleanly. For example, we might like to be able to
specify any three of some group of five nodes to play the part of the trusted
machine. While this is clearly possible, we have not yet worked out the
specific protocols. We also might want to use ideas from the Rampart
system [Reiter 1996] to facilitate distributed trust. Also, it would be useful
to anonymize the communications and protocols between an untrusted
machine and several of its peers, which are playing the part of the trusted
machine in our scheme. This would make it harder for an attacker to
compromise one machine, and then learn from it which other machines to
compromise in order to be able to violate the log’s security on the first
compromised machine.
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