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Abstract—As promising results have been obtained in de-
feating code obfuscation techniques, malware authors have
adopted protection approaches to hide malware-related data
from analysis. Consequently, the discovery of internal cipher-
text data in malware is now critical for malware forensics
and cyber-crime analysis. In this paper, we present a novel
approach to automatically extract secrets from malware. Our
approach identifies and extracts binary code relevant to secret
hiding behaviors. Then, we relocate and reuse the extracted
binary code in a self-contained fashion to reveal hidden
information. We demonstrate the feasibility of our approach
through a proof-of-concept prototype called ASES (Automatic
and Systematic Extraction of Secrets) along with experimental
results.

I. INTRODUCTION

Malicious codes have been tremendously evolved with
various intents and techniques. With the boom in Internet
and electronic commerce, we witnessed the switch of mal-
ware authors’ interests from boasts to economic benefits.
Along with this paradigm shift, malware authors have been
developing sophisticated methodologies to undermine the
analysis of captured malware and compromised systems. In
the early days of malicious code analysis, it was relatively
easy to reveal the malicious behaviors of malware. However,
the code analysis is no longer straightforward since we must
first defeat heavily obfuscated code and encrypted data.

One way to study the behavior of malware is to com-
prehend its binary code because corresponding source code
is not available in the most cases. Understanding malware
starts with disassembly, which recovers human-readable
symbolic representation of malware from its binary form.
Obfuscation techniques are prevalent in both benign and
malicious programs to prevent malware from being disas-
sembled and understood by analysts. Disassembly desyn-
chronization [28] has profound impacts on linear sweep
disassembly, while dynamically computed target addresses
such as indirect calls or jumps may thwart recursive traversal
disassembly. Static approaches [19] with the help of control
flow graphs and statistical methods can accurately identify a
large fraction of instructions obfuscated by aforementioned
techniques.

Recent obfuscation techniques such as packing [17] and
emulation [6] technologies have been widely adopted. Pack-
ing disguises malicious code as non-executable data in
malware files and transforms it back to executable code at

runtime. Emulation converts binary code to some bytecode
and attaches both bytecode and its corresponding emulator
to the malware. Static [14] and dynamic [17] approaches
have been proposed to automatically unpack such packed
malwares. Also, dynamic data-flow [29] and taint analy-
sis [24] have been presented to generate control flow graphs
for emulator-based malware analysis.

As code obfuscation techniques are not sufficient for
malware authors to disguise their motives, they attempt
to make use of other protection approaches, which are
normally used to protect data rather than code [12], to hide
their secrets from analysts. Therefore, prior code extraction
techniques may work smoothly for packing and emulation,
but they are ineffective to accommodate the new trend of
malware evolution.

Given the significance of this problem, another research
branch in malware analysis is concerned about the extraction
of malware-related data [11]. Data extraction plays an im-
portant role for malware forensics since investigators could
use the wealth of information that can be retrieved from
malware to identify suspicious activities. Previous solutions
for data extraction from malware were highly manual [4]. A
major drawback of these attempts is that human knowledge
of the binary code location and behavior is required.

Recently, Caballero et al. [10] and Kolbitsch et al. [18]
attempted to automatically extract interesting binary code
pieces and reuse them for security analysts. One application
of their binary code reuse technique is to reveal some
malware-related data. The method presented by Caballero et
al. [10] identifies the prototype of binary code fragments
that correspond to source code level functions. They used
dynamic analysis to extract the actual parameters for code
fragments and inferred the formal parameters by multiple
runs. Kolbitsch et al. [18] proposed a method, which also
uses the combination of static and dynamic analyses, to
extract the complete algorithm related to a certain activity
that may consist of multiple binary level functions. They
relocated and executed the extracted algorithm for domain
name generation and botnet protocol infiltration.

In this paper, we classify malware-related data as internal
or external plaintext or ciphertext in terms of its origin
and form. We observe that existing manual and automatic
solutions pay more attention to external ciphertext data, such
as botnet command and control (C&C) protocol. In this
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paper, we address the reasons why internal ciphertext data
is equally important for malware forensics and cyber-crime
investigation. We formally define the research problem of
automatically extracting internal ciphertext data embedded
in malware to complement existing research efforts. In the
rest of the paper, we use the terminologies internal ciphertext
data and secret interchangeably.

In order to automatically extract secrets embedded in
malware, we propose a novel technique combining static
analysis and code execution together to reveal valuable
hidden information in binary. Our approach takes a mali-
cious binary code as input, then automatically discovers the
plaintext value of hidden secrets in this binary. Our method
does not require prior knowledge of (i) the existence and
location of secrets and (ii) protection algorithms used in
given malicious code. The key idea behind our solution is
that the malicious code itself has to decode its embedded
secrets before using them if the hidden secrets exist. Hence,
we can identify the binary variables which have to be used
as plaintext, infer the existence of secrets and locate the
decoding algorithm. Then, we use binary code relocation
technique to inject identified code into another process
address. By executing this code in a protected process, we
can reveal the hidden information in malware.

The differences and advantages of our approach over
existing proprietary algorithm extraction solutions are as
follows: 1) Caballero et al. [10] used a bottom-up approach
to identify the interfaces of all binary functions in malware.
Instead, we use a top-down approach to merely extract
interesting binary code which is responsible for the behavior
we are concerned about; 2) instead of extracting the proto-
type of binary functions, we recover the actual parameters
and runtime context of each invocation of binary function.
Therefore, our binary code reuse does not involve human
analysts to provide parameters for code execution; and 3)
our approach performs static analysis to identify interesting
code while Kolbitsch et al. [18] proposed dynamic analysis
to pinpoint interesting binary. However, dynamic analysis
could not cover all the control paths and is vulnerable to
malware defense techniques [16].

In addition, we demonstrate the feasibility and applica-
bility of our solution by implementing a proof-of-concept
prototype called ASES (Automatic and Systematic Extraction
of Secrets, /asẽs/), which is an IDA Pro [3] plugin to recover
external modules and API names loaded by malware, along
with our experimental results.

The rest of this paper is organized as follows. Section II
presents the problem definition and overviews our approach
and system architecture. Section III describes our decryptor
identification method. Section IV presents our binary reloca-
tion algorithm. The evaluation of our solution is discussed
in Section V followed by the related work in Section VI.
Section VII discusses the future work and concludes the
paper.

II. SYSTEM OVERVIEW

In this section, we first categorize malware-related data
based on two different dimensions. We then overview the
research issues in extracting internal ciphertext data in
binary. Also, we outline our approach with a motivating
example.
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Figure 1: Malware-related Data

A. Malware-related Data
Figure 1 shows malware-related entities and data. The

malware itself, the host victim machine and C&C server are
the three major players in a typical cyber-crime setup. In
terms of origin, malware-related data could be categorized
into external data and internal data. External data, such
as local host information, may be retrieved by malware
on the fly or obtained from network communication with
C&C servers. For example, a malware may query the hard
disk serial number of its host machine, transform it into an
encrypted form with its proprietary algorithm and send it
to its C&C server. Then the C&C server may send back
an encrypted spam template so that the malware could
decrypt it and send spam in the future. Internal data is
embedded in malware in a static way. Although data segment
is designed to store global and static variables initialized by
programmers, programmers may choose to store data in any
other customized segments.

In terms of form, malware-related data may be divided
into plaintext and ciphertext data. In Figure 1, the solid
rectangle and arrow indicate encrypted data and secured
communication while the dashed rectangle and arrow rep-
resent plaintext data and unprotected communication. In
practice, external data is observed in form of both plaintext
and ciphertext. Local host information is normally obtained
by operating system APIs or interrupts. This information
is not encrypted since confidentiality is not a serious issue
between a host machine (OS and CPU) and its applications.
On the contrary, C&C messages between the server and
malware are usually encrypted to prevent analysts from
comprehending them easily.

Some internal data exists as plaintext which may be in the
form of text or programmer-defined structure. The internal
plaintext data may be introduced in compiling or linking
stage by malware programmers as global or static variables.
One example of data generated by a compiler is a string.
For example, it would be ‘This Program Cannot Be Run
in DOS Mode’ in PE header. If a windows executable is
invoked in real-mode, a stub will display this message and
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make this program exit. The PE header also includes other
plaintext data, such as import address table which indicates
external libraries used by this program. Internal plaintext
data could be easily recovered by tools such as GNU strings
which print printable character sequences in any file format.
To recover other plaintext data which is not in the form of
text, the knowledge of data structure is also needed. External
plaintext data could be captured by monitoring the host
behavior [33] or network behavior [25] of malware.

Compared with plaintext data extraction, ciphertext data
receives much more attention in malware analysis and foren-
sics because valuable information is more carefully protected
by malware programmers. In practice, most existing solu-
tions are performed to find, deobfuscate and understand the
transformation code chunks for deciphering data by human
analysts in a manual way [4]. Recently, Caballero et al. [10]
and Kolbitsch et al. [18] attempted to automatically reuse
binary in malware to decrypt and rewrite botnet protocols.
Their approaches deal with external ciphertext data, but
neglect the importance of internal ciphertext data.

B. Problem Definition

In a malware executable, internal sensitive data include
module names, API names, URLs, email addresses, and
any other meaningful strings and structures which may lead
to the disclosure of the malware behaviors or be used for
forensic analysis. External module and API names give a
static high-level outline of malware behaviors. URLs and
email addresses could help forensic analysts trace adver-
saries behind the scene. Due to the importance of such
information residing in an executable, malware authors use
data protection mechanisms ranging from simple XORs
to sophisticated cryptographic algorithms to hide them via
internal ciphertext data from security analysts [26]. Based
on our observation, we believe internal ciphertext data is as
important as external ciphertext data in cyber-crime analysis.
We denote internal ciphertext data, protection mechanisms,
and the code used to decrypt ciphers as secret, encryption
and decryptor, respectively.

Encrypting secrets has been widely adopted in construct-
ing real world malicious code by malware authors [5],
[26]. Although revealing these secrets by manual step-by-
step debugging or execution instrumentation is possible, this
process is very difficult for extracting large-scale secret due
to the following reasons: first, the process is tedious. In most
cases, extracting secret is to manually repeat the similar
analysis process. Valuable information may be overlooked
due to potential lack of consistent attention; second, the
process involved with both static and dynamic methods is
time-intensive. It usually takes 2 to 5 minutes for sandbox
systems, such as Anubis [1], to generate analysis reports;
and thirdly, the process may heavily rely on computation
and storage if instrumentation techniques are used.
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Figure 2: Motivating Example

Therefore, extracting secrets in large-scale is not practical
by adopting such primitive methods. Furthermore, there exist
many dynamic defense techniques [13], [15] to prevent
monitoring or instrumentation. Given a malicious binary
code, our goal is to recover plaintext data from encrypted
data in the code. Furthermore, the process of extraction
should not require human involvement and to access source
code or symbol information.

C. Motivating Example

Among sensitive data, external dynamically-linked li-
braries (DLL) and API names are of great importance owing
to the fact that they give us an outline of what kind of actions
a program performs. For example, a program which loads
crypt32.dll tends to make some cryptographic opera-
tions, such as encryption and hashing. A program loading
ws2_32.dll may imply some low level network actions,
as we discussed earlier. API names give a more detailed
static profile of the behavior of a program. Invocation of
CryptHashData implies some data is hashed during the
execution of this program. Also, correct identification of
WSAConnect and its parameters could tell analysts which
network protocol is being used by the program.

In implicit DLL loading, import lookup table (ILT) and
import address table (IAT) work together to provide loader
with information to make connection with external API in
Windows PE format [23]. ILT stores external API informa-
tion, such as API names and ordinal numbers in DLL. Then,
during binding, the entries in the IAT are overwritten with
the actual addresses of the symbols that are being imported.
Thereafter, the program could call external API by jumping
to its address indicated in IAT.

Because API information is stored in the format of
plaintext, existing tools, such as IDA Pro and Dumpbin [2],
can display the names of imported APIs by analyzing ILT
if they are implicitly loaded. Malware authors usually take
control over this loading procedure by decrypting ciphered
API information and explicitly loading external API at
runtime. This process, named run-time dynamic linking
under Microsoft platform, uses the LoadLibrary API to
load DLLs. The GetProcAddress API is used to look up
exported symbols by name, and FreeLibrary is invoked
to unload DLLs. Analogous APIs–such as dlopen, dlsym,
and dlclose–also exist in the POSIX standard.
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subroutine IATBuilder sub_40C7F3
... ;

1 lea eax, [ebp-400h] ;
2 push 0041FD8C ;xreary32.qyy
3 push eax ;
4 call sub_40E712 ;Decryptor
5 pop ecx ;
6 push eax ;
7 call GetModuleHandleA ;
8 mov edi, eax ;
9 lea eax, [ebp-400h] ;
10 push 00421634h ;FrgReebeZbqr
11 push eax ;
12 call sub_40E712h ;
13 pop ecx ;
14 push eax ;
15 push edi ;
16 call GetProcAddress ;
17 mov [4C0604], eax ;

... ;

Figure 3: Subroutine sub 40C7F3

As a motivating example, Figure 2 shows a simplified
call graph and data section of a sample virus. The solid line
with arrow indicates the calling operation. The dashed line
with single-headed arrow from subroutines to data indicates
the read operations. And, the dashed line with double-
headed arrow indicates read and write operations from the
subroutine to the data location. We use the same naming
convention as IDA Pro for subroutine and data. sub_x is
the name given to the subroutine at address x. dword_x
is a 32-bit data at location x. dd_x denotes a byte string
located at x, whose length is unknown.

In this motivating example, before performing any
malicious behavior, the virus builds a customized
IAT by calling sub_40C7F3, which first decrypts
DLL and API names, gets external API addresses by
invoking GetModuleHandle, LoadLibrary and
GetProcAddress, then writes them in the memory
ranging from 0x4C0288 to 0x4C09A0. This memory
range (0x4C0288 to 0x4C09A0) plays the same role
as an import address table. Any future calls to external
API will be redirected through this table. To achieve this
goal, sub_40C7F3 calls sub_40E712 recursively to
decrypt data stored from 0x42140C to 0x42192D, which
invokes sub_40E697 to mutate the keys. Therefore,
sub_40E712 is the decryptor and we call sub_40C7F3
as IATBuilder.

Figure 3 shows the decryption and customized IAT related
code in sub_40C7F3. Instruction 1 loads the effective ad-
dress of a local variable. EBP-400h indicates this variable
is not allocated by sub_40C7F3 but by its ancestor in call
graph. Through manual analysis, we notice this address is
used to store the decrypted strings. Instruction 2 pushes the
address of an encrypted string xreary32.qyy on stack.
Instruction 3 pushes the address for decrypted string on
stack. Then, Instruction 4 calls subroutine sub_40E712,
which is the decryptor. After sub_40E712 returns, the
decrypted string, which is kernel32.dll in this case,

subroutine Decryptor sub_40E712
1 push ebp ;
2 mov ebp, esp ;
3 sub esp, 38h ;Allocate local variables
4 mov esi, 00421ADCh ;Access global variable

... ;
5 lea edi, [ebp-1Ch] ;Access local variable
6 mov esi, 00421AC0h ;Access global variable
7 lea edi, [ebp-38h] ;Access local variable

... ;
8 call sub_40E675h ;Call another procedure

... ;

Figure 4: Subroutine sub 40E712

is stored at address EBP-400h. Instruction 6 pushes this
address on stack again for Instruction 7 to get the module
handle by calling Windows API GetModuleHandleA.
Instruction 8 stores this handle to EDI. Instructions 9
through 13 do the same actions as Instructions 1 through
5 do. The only difference is the input for sub_40E712 is
changed to FrgReebeZbqr that is an encrypted API name.
Instruction 14 pushes the name of API on stack, which is
SetErrorMode returned from Instruction 12. Instruction
16 gets the actual address of API SetErrorMode in EAX.
Instruction 17 stores this address in an entry 0x4C0604 of
the customized IAT table.

Figure 4 shows partial code of decryptor sub_40E712.
Instruction 3 reserves 38h bytes on stack for local variables
of this procedure. Instructions 4 and 6 move the addresses
of global variables (421ADCh, 421AC0h) to ESI for the
further use. Our analysis on this sample virus identifies
that these two global variables are keys for decryption.
Instructions 5 and 6 access local variables of this procedure
and Instruction 8 calls another subroutine.

D. Approach and System Architecture

In this section, we articulate the system architecture of
our proof-of-concept prototype called ASES, which automat-
ically recovers external API information. ASES is a C/C++
program on top of IDA Pro, which includes modules to
perform static analysis, binary relocation, and code execu-
tion. As an IDA Pro Plugin, ASES leverages the features of
IDA Pro including disassembly, control flow graph, cross
reference, and activation record analysis.

ASES consists of four different phases: pre-processing,
decryptor identification, decryptor relocation and decryptor
reuse. Figure 5 shows the four phases of ASES and the
interactions between each module. In pre-procesing phase,
malicious code is disassembled by recursive descent dis-
assembly. Section information and plain import table are
read from PE header and stored in local database for
further analysis. All functions and function-like code are
identified, and function call relationships are stored in a
call graph as well. In each function, the stack layout is
also recovered: the starting address and size of each input
parameter are calculated and any accessed local variables
are identified. A control flow graph is also generated for
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Figure 5: ASES System Architecture

1 const int VAR_SIZE = 100;
2 const int VAR_NUM = 20;
3 const int CODE_SIZE = 200;
4 const int CODE_NUMBER = 20;

...
5 #pragma data_seg(.data)
6 char g_Var[VAR_NUM][VAR_SIZE] = {{0}};

...
7 #pragma code_seg(.text)
8 char g_Code[CODE_NUMBER][CODE_SIZE] = {{0}};

Figure 6: Space Reservation

each function. Strings longer than 4 bytes in binary are all
recorded. Furthermore, both code and data cross-references
are recorded in database.

The second phase performs static analysis on disassembly
to identify decryptor. There are two major components
involved in this phase: encryption detection engine takes
disassembly as input and applies our naive algorithm to
identify call sites, where plaintext must be obtained as
parameters, as suspicious locations; and dependency engine
takes outputs from encryption detection engine and disas-
sembly, then calculates the start and end locations for binary
relocation. All information generated in this phase is stored
in memory structure for the subsequent steps.

In the first step of the third phase, the code between start
and end locations is copied from malware image to ASES
runtime address space. Then, ASES checks whether control
transfer instructions exist in the copied code. If a CALL
instruction is identified, ASES recursively copies callee to
its space. If a JMP instruction is identified, ASES checks
whether the jumped location is out of start and end. If that
is the case, ASES copies the jumped code to its space. Since
it is impossible to predict the number and size of functions
to be copied, ASES reserves a large amount of space to hold
the code. Figure 6 shows an example code to reserve space in
.data and .text sections under Windows Visual Studio
environment by using pragma directive. Statements 3 and
4 in Figure 6 define two constants to hold 20 regions with
200 bytes for code. Statements 7 and 8 reserve space in
.text section and define it as g_Code. After recursive
function relocation, ASES runs its variable relocation engine
to relocate binary variables. Similar to the way to reserve
code, ASES reserves space in .data section for variables
that need to be relocated.

FARPROC WINAPI GetProcAddress(
__in HMODULE hModule,
__in LPCSTR lpProcName);

Figure 7: Prototype of GetProcAddress

In the final code execution phase, ASES jumps to the
relocated start by calling g_Code[0] and waits for its
return. Since code is recursively copied and redirected by
function relocation engine, the execution context, epilogue
and decryptor itself are all executed. After code execution,
ASES outputs the value of all variables in this code.

III. DECRYPTOR IDENTIFICATION

The goal of decryptor identification is to find the code
that is responsible for internal cipher decoding. Note that
decryptor does not necessarily correspond to one high-
level language function. It may comprises several high-level
language functions and most importantly it includes the
instructions for passing function parameters. We first define
hot, start and end instructions for decryptor identification.
In light of these definitions, the problem of identifying
decryptor, its context and epilogue is transformed into
identifying hot instruction and its corresponding start and
end instructions.

Hot Instruction: In a program P , there exist some
instructions that certain data must be plaintext when these
instructions are ready to be executed. For instance, the Win-
dows API GetProcAddress, whose prototype is shown
in Figure 7, takes the name of function, which the caller
wants to use, as the second parameter. Therefore, when
GetProcAddress is called in a program, the second pa-
rameter must point to some plaintext API names, otherwise
the call will fail. We call an instruction hot instruction,
if its parameters are encrypted and decrypted at runtime.
Instruction 7 in Figure 3 is an example of hot instruction.
When the program counter in CPU reaches this location at
runtime, the string located by EAX at Instruction 6 must be
plaintext.

Start Instruction: We define start instruction as the
instruction from where relocation should start. For a given
hot instruction, there are many instructions that we could
start relocation from and end up with the same outcome. We
define supremum start instruction as a start instruction that
has the shortest path to the corresponding hot instruction.
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End Instruction: End instruction is the last instruction
we need to relocate. An end instruction is not necessarily
the immediate precedent instruction of corresponding hot
instruction but the instruction that can provide an exact stack
match from the start instruction. For example, Instruction 5,
instead of Instruction 6 in Figure 3, is the end instruction for
a hot instruction 7. Failure to correctly identify end instruc-
tion may result in program crash due to stack imbalance.

A. Identifying Hot Instructions

The first step to identify hot instructions is to find the
functions whose parameters have to be plaintext. In this
work, we focus on identifying functions whose parame-
ters are strings and ignore parameters in other structured
forms. In standard C library, string parameters are passed
by char *. However, some char * parameters are not
strings. It could also be a pointer to memory buffer. There-
fore, we use the combination of formal parameter type and
name to infer whether this parameter is a plaintext string.
For each C library function, we check whether it has any
char * or const char * in its prototype. Then, we
use regular expression to check whether the name of this
parameter has any substring such as name and path in it.
If it is true, that means this function has at least one string
parameter. It is much easier to identify string parameters for
Windows library functions. Because Windows libraries use
PVOID to denote the address of memory buffer and LPSTR,
LPCSTR, LPWSTR, LPCWSTR, LPTSTR, and LPCTSTR
to represent string parameters. Windows function prototype
also provides information whether this parameter is for input
or output by defining __in and __out. This information
is also utilized since we are only concerned about input
parameters.

After we identify functions that take string parameters
with the above approach, we check whether the given
malware invokes any of these functions with the help of
disassembly and cross-reference information discovered by
IDA Pro. Then, we test whether the parameter of this func-
tion is encrypted. Although entropy testing [21] is successful
in identifying symmetric and asymmetric key encryption,
it is incapable of identifying substitution encryption for
which the entropy has no significant change. In addition,
to perform entropy analysis, a relatively large number of
samples should be collected. Besides, the encrypted data
is scattered in malware image and its amount is unknown.
To address this challenge, we present an effective method
to simply call the candidate instruction with its parame-
ters. For Instruction 7 in Figure 3, our solution invokes
GetModuleHandle(’xreary32.qyy’). Because file
xreary32.qyy does not exist, GetModuleHandle re-
turns false. We consider the parameter is encrypted and
Instruction 7 is a hot instruction.

B. Identifying Supremum Start Instructions
For every hot instruction, the entry point of the malicious

code could be viewed as its start instruction. However, if we
relocate code from the entry point to end instruction, many
instructions which do not belong to decryptor will be also
relocated. This leads us to consider two challenges: First,
unnecessary computational cost can be brought into since
unnecessary code may be executed. Second, the executed
unnecessary code may be maliciously performing some
network attacks and information theft.

Our goal is to identify all instructions relevant to the
hot instruction and to exclude irrelevant instructions at the
same time. The core idea is to use backward slicing [8],
[34] on hot instruction and its parameters to determine
all previous instructions which affect the parameters. The
final challenge is that given a hot instruction we need to
identify all of its parameters. Because there is no variable in
binary, this process is not as obvious as high-level language
counterpart. Inspired by Clemens et al. [18], we use the
prototype information retrieved from library header files to
infer the binary parameters and perform a backward slicing
on each parameter. Finally, among the instructions identified
by backward slicing the one that precedes all others is
recognized as the supremum start instruction.

C. Identifying End Instructions
Different calling conventions in C/C++ result in different

responsibility for stack cleanup. A __stdcall function
cleans the stack by itself, while a __cdecl function needs
the help from its caller to restore the stack. Hence, for binary
code that corresponds to a __stdcall function, the end
instruction is the same one as the hot instruction. However,
the end instruction for a __cdecl function is not so clear
to determine. If we simply relocate a __cdecl function
binary without relocating its caller’s stack cleanup code, the
size of data pushed on stack before the function is called
and the size of data popped from stack after the function is
executed do not match each other. Such a stack imbalance
will cause the crash of the hosting process.

The basic idea to determine an end instruction is to
emulate the stack size change from a start instruction. Note
that emulation of other behaviors in binary function is
not necessary. Because only the size of stack is used for
determining the end instruction, the actual value on the
stack is irrelevant for the analysis. Our approach initializes
a relative stack pointer with 0 and starts analysis from the
start instruction to analyze every stack operation instruc-
tion. Stack operation instructions include PUSH, POP and
arithmetic operations on ESP, such as SUB ESP, 44. If a
PUSH or SUB on ESP is encountered, we increase relative
stack pointer by the size of data placed on stack accordingly.
On the other hand, if a POP or ADD on ESP is encountered,
we decrease relative stack pointer accordingly. If control
transfer instructions, such as CALL, are faced, we jump
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int g int1 = 100;
int g int2 = 100;

int func1(int a){
int b1 = a + 1;
return b1;}

int func2(int a){
int b2 = func1(a) * 2;
return b2;}

int main(int argc, char *argv[]){
int bm = func2(g int1) * 3 + g int2;
return 0;}

(a) C Program

1 push ebp
2 mov ebp, esp
3 push ecx
4 mov eax, [ebp+8]
5 add eax, 1
6 mov [ebp-4], eax
7 mov eax, [ebp-4]
8 mov esp, ebp
9 pop ebp
10 retn
(b) func1 x86 program

1 push ebp
2 mov ebp, esp
3 push ecx
4 mov eax, [ebp+8]
5 push eax
6 call sub 401000
7 add esp, 4
8 shl eax, 1
9 mov [ebp-4], eax
10 mov esp, ebp
11 pop ebp
12 retn
(c) func2 x86 program

1 push ebp
2 mov ebp, esp
3 push ecx
4 mov eax, dword 403018
5 push eax
6 call sub 401020
7 add esp, 4
8 imul eax, 3
9 add eax, dword 40301c
10 mov [ebp-4], eax
11 xor eax, eax
12 mov esp, ebp
13 pop ebp
14 retn

(d) main x86 program

Figure 8: A C Program that Uses Global/Local Variables and Its x86 Program in Intel Syntax

into the callee to record the stack change recursively. The
analysis stops only when the hot instruction is passed and
relative stack pointer is zero. The instruction where the
analysis stops is identified as the end instruction.

IV. DECRYPTOR RELOCATION AND REUSE

In this section, we discuss how to relocate and reuse
decryptor identified from previous section. The relocation
process makes sure that the relocated code is in a self-
contained fashion. Since we do not assume the existence
of symbol information and relocation table, the approach we
propose is totally based on binary code itself without having
any meta-data. Binary relocation without meta-data faces the
following challenges: 1) there does not exist information
for which references should be relocated; 2) variable type
information is not available [30]. It may not be possible
to infer high level variable types from binary code; and 3)
variable size information is not available. It is not even clear
how many bytes of memory the variables hold. We address
these challenges by categorizing data reference into different
types of variables.

We categorize variables in binary into register variable,
stack variable, ancestor stack variable, and global variable.
We use a C program and its corresponding x86 assembly to
illustrate our binary relocation approach. Figure 8 (a) gives
the C program that uses global and local variables. Figures 8
(b) - (c) show the corresponding x86 program of function
func1, func2 and main. 1 We do not need to allocate
memory space for heap variables, because those variables
will be allocated at runtime by relocated code itself.

Register Variable: In a piece of disassembly code, reg-
isters are considered as register variables whose values are
stored in physical CPU registers. Register variables do not
take any memory space in runtime address space (RAS) and
therefore do not need relocation. Instruction 1 in Figure 8 (b)
is an example of register variable which is stored in EBP.
Register variables can be used to access or represent the
address of other kinds of variables. Instruction 4 in Figure 8
(b) is an example in this case. [EBP+8] denotes the variable

1Note that our analysis is based on x86 program only. C program shown
in Figure 8 is just for brevity.

at the address that is 8-byte higher than the stack frame
pointer.

Stack Variable: Stack variables are those that are allo-
cated by stack operation instructions at runtime. Instruction
3 SUB ESP, 38h in Figure 4 allocates 38h bytes for local
variables. Instruction 3 in Figure 8 (b) is another example
to allocate local variable, although it does not look like
one at a careless glance. This instruction allocates 4 bytes
for the corresponding C program integer b1. If a function
is fully relocated, its local variables are stack variables.
sub_40E712 shown in Figure 4 is an example of fully
relocated binary function, so we do not need to allocate
memory space for its local variables.

Ancestor Stack Variable: Ancestor stack variables are
those that are stack variables originally, but their residing
functions will not be fully relocated. This happens when
the start instruction is located after the entry point of this
function. We call them ancestor stack variables, because
they are originally allocated at runtime as well by ancestor
callers of relocated code identified in our static analysis.
sub_40C7F3 shown in Figure 3 is an example of partially
relocated procedure. The code before Instruction 1 and its
ancestor callers are not relocated in new runtime address
space. Therefore, those instructions which are responsible
for allocating local variables are stripped from the relocated
code. Instruction 1 LEA EAX, [EBP-400h] accesses
such a variable. We allocate global space in .data section
for ancestor stack variables.

We further illustrate the difference between stack variable
and ancestor stack variable by an example code shown in
Figure 8. In this code, two global variables are defined.
main calls func2 that calls func1. As shown in Figure 9,
g_int1 and g_int2 reside in global data section. bm, b2
and b1 reside in corresponding activation record (AR) of
main, func2 and func1. If Instruction 4 in Figure 8 (d) is
recognized as the start instruction, allocation for bm which is
a stack variable in original runtime address space (RAS old)
is missed. In this case, bm is an ancestor stack variable.
Therefore, in new runtime address space (RAS new), bm is
allocated in global data section instead. If Instruction 4 in
Figure 8 (c) is identified as the start instruction, both bm and

165



]D3?[.9 ]D3?Z,/

:;9<=;>+=?=

=6%"5%@,)*

=6%"5%58*'A

=6%"5%58*'B
*+$%>H

*+$%;?*+$I

*+$%>I

*+$%>&

*+$%;?*+$H

:;9<=;>+=?=

=6%"5%.8*!"#$1

*+$%>H

*+$%;?*+$I

*+$%>I
*+$%;?*+$H
*+$%>&

(a) Start Ins = Figure 8-(b)-4
]D3?[.9 ]D3?Z,/

:;9<=;>+=?=

=6%"5%@,)*

=6%"5%58*'A

=6%"5%58*'B
*+$%>H

*+$%;?*+$I

*+$%>I

*+$%>&

*+$%;?*+$H

:;9<=;>+=?=

=6%"5%.8*!"#$1

=6%"5%58*'A=6%"5%58*'B
*+$%>H

*+$%;?*+$I

*+$%>I
*+$%;?*+$H
*+$%>&

(b) Start Ins = Figure 8-(c)-4
]D3?[.9 ]D3?Z,/

:;9<=;>+=?=

=6%"5%@,)*

=6%"5%58*'A

=6%"5%58*'B
*+$%>H

*+$%;?*+$I

*+$%>I

*+$%>&

*+$%;?*+$H

:;9<=;>+=?=

=6%"5%.8*!"#$1

=6%"5%58*'A

=6%"5%58*'B
*+$%>H

*+$%;?*+$I

*+$%>I

*+$%;?*+$H
*+$%>&

(c) Start Ins = Figure 8-(d)-4

Figure 9: Relocation with Different Start Instruction

b2 are moved to global data section in RAS new as shown
in Figure 9 (b). Figure 9 (c) shows variable relocation, if
Instruction 4 in Figure 8 (b) is identified as the start of
relocation.

We treat global variables the similar way as does ancestor
stack variables. Reserved .data section space is allocated
for global variables. In addition, the values of initialized
global variables are copied to RAS new. Instruction 10
PUSH 00421634h in Figure 3 is an example of access
global variable. The value FrgReebeZbqr of variable at
00421634h is copied to its relocated variable in RAS new.

In order to reuse the relocated code, we wrap the relocated
code body in an assembly block and place this block in
a C function with a prototype int runCodes(void).
After code relocation, ASES calls runCodes() to give the
control to the relocated code.

V. EVALUATION

To evaluate the effectiveness of our approach, we tested
Virut.d [7] with ASES. Virut.d is a polymorphic,
memory-resident Windows 32-bit malware, which has entry
point obscuring capabilities. Upon running, Virut.d in-
jects winlogon.exe and infects files on local and shared
drives. Virut.d has good camouflage by using process
injection, but it does not adopt any rootkit techniques.
Virut.d contains an IRC-based backdoor which provides
unauthorized access to infected computers. The snapshot of
the interface of ASES is given in Figure 10. Analysts run
ASES by clicking the specific plugin button in IDA Pro, and
ASES yields the results in output window.

We conduct experiments on a machine with Intel Core2
Duo CPU 3.16 GHz 3.25 GB RAM running Windows XP
Professional SP3 and IDA Pro 5.6.0.931. We use Windows
API GetTickCount to measure the performance of our
prototype. Without ASES, IDA Pro identified 135 APIs im-
ported from seven different DLLs by reading Virut.d’s PE
header. Table I (a) shows these seven DLLs and one function
from each DLL. These DLLs are typical dynamic link library
files loaded by Windows applications, which handle memory
management, input/output operations, interrupts, windows
user interface, process status helper, web pages and network

Figure 10: ASES Snapshot as an IDA Pro Plugin

behaviors. Although this DLL information can imply some
behaviors of this executable, this revealed information is
limited because they are almost loaded by every Windows
program nowadays.

Now, we describe the results ASES discovered from this
malware:

Hot Instruction Identification. At the very first step of
static analysis, ASES detected 94 suspicious function invo-
cations, then narrowed down the number of hot instructions
to 82. These invocations scattered from address 406BC3h
to 40D688h, which imply that code in this section may be
responsible for initialization.

Start/End Instruction Identification. ASES identified
start/end instructions for all 82 hot instructions. We no-
ticed that, for most cases, the code distance from the start
instruction to the end instruction is the same. We suspect
the malware author reused some source code, therefore the
compiler generated the same binary code. However, we did
observe several cases, in which the code distance from the
start instruction to the end instruction is larger than normal.
We manually checked these cases for the evaluation purpose
and verified that ASES identified the correct instruction.

Binary Relocation. ASES relocated five variables includ-
ing ancestor stack variables and global variables between
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(a) An Incomplete List of API in PE Header
Stub Address Name Dll
0041A0B8h GetProcAddress kernel32.dll
0041A1C4h GetModuleFileNameExA psapi.dll
0041A1CCh ShellExecuteA shell32.dll
0041A1E4h FindWindowA user32.dll
0041A1F4h GetFileVersionInfoSizeA version.dll
0041A204h InternetGetConnectedStateEx wininet.dll
0041A218h socket ws2 32.dll
0041A220h connect ws2 32.dll

(b) An Incomplete List of identified API in customized IAT
Encrypted String Name Dll
PerngrZhgrkN CreateMutexA kernel32.dll
VagreargPenpxHeyN InternetCrackUrlA wininet.dll
UggcBcraErdhrfqN HttpOpenRequestA wininet.dll
FUPunatrAbgvsl SHChangeNotify shell32.dll
HEYQbjaybnqGbSvyrN URLDownloadToFileA urlmon.dll
ErtBcraXrlRkN RegOpenKeyExA advapi32.dll
QafSyhfuErfbyirePnpur DnsFlushResolverCache dnsapi.dll
JArgNqqPbaarpgvba2N WNetAddConnection2A mpr.dll

Table I: Case Study with Malware Virut.d

each start and end instruction pair. We manually checked
the correctness of this step for the evaluation purpose, and
we found the smallest variable is 4 bytes, while the largest is
around 30 bytes. ASES relocated five functions as well. Note
that if a function is called more than once, ASES relocates it
for each invocation. This redundancy can be removed, if the
information of relocated functions are stored. ASES gives
control to relocated code after static analysis and binary
relocation. In our experiments, this step was very effective
and fast.

Experimental Results: ASES identified 82 API names
which were encrypted in this malware. These APIs can be
categorized into two types: 1) the DLL is loaded implic-
itly, but the API was not found in the import table. The
first four APIs recovered in Table I (b) are in this case.
The implicit load of kernel32.dll, wininet.dll,
and shell32.dll were identified by IDA Pro. However,
invocations to CreateMutexA, InternetCrackUrlA,
HttpOpenRequestA, and SHChangeNotify were not
disclosed. The disclosure of these APIs made clear that
this malware has some http operations, which is useful to
profile the behavior of this malware; 2) neither the DLL
is loaded explicitly, nor the API. The rest of four APIs in
Table I (b) are in this latter case. urlmon.dll contains
functions used by Microsoft OLE, which allows an operation
for embedding and linking to documents and other objects.
advapi32.dll is a part of an advanced API service
libraries supporting numerous APIs including many registry
calls. dnsapi.dll is a module that contains functions
used by the DNS Client API. mpr.dll contains func-
tions used to handle communication between the Windows
operating system and the installed network providers. Not
only these DLLs look unfamiliar to security layman, we
also identified some APIs which are undocumented, such
as DnsFlushResolverCache, used to flush the DNS
cache. Disclosure of these unfamiliar and undocumented
DLLs and API helps outline the malware even further in
a fine-grained manner.

Performance: In normal cases, IDA Pro takes less than
one minute to process executables in our pre-processing
phase. To reveal 82 external API names from Virut.d,
ASES only took 672 milliseconds after pre-processing, sup-
porting reasonable real-time responsiveness. Static analysis

phase and binary relocation phase take around 45% of the
process, respectively, and code execution takes around 10%
of the entire process.

VI. RELATED WORK

Binary code reuse is the most related research effort to
our work. Lin et al. [20] proposed reuse-oriented trojan that
extracts interfaces in benign programs and adds malicious
functionalities on top of them. The idea is to reuse binary
code and transform it into code with malicious purpose.
Caballero et al. [10] performed the first systematic study of
automatic binary code reuse and implemented BCR, which
can extract binary functions and wrap it with a C interface.
Kolbitsch et al. [18] developed INSPECTOR almost at the
same time as BCR was introduced. Their approach was able
to extract an entire functionality from binary.

Another work related to ours is dependency checking for
binary code. Weiser first proposed program slicing [34] to
check statement dependency of source code in high-level
language. Most programming slicing techniques [32] focus
on slicing high-level language programs where variables
information and transfer of control is clear. Akgul et al.
presented how to perform dynamic slicing on assembly [8].
Sharif et al. presented abstract variable binding to reverse en-
gineer emulators [29]. They used absolute memory addresses
as variables, analyzed data flows among entire trace to
determine variable binding, and used forward and backward
slicing to identify dependent abstract variables.

There also exist some attempts to recover variable value
for binary in a static way. Value-set analysis [9] recovers
variable-like entities statically from executables and infers
information about the content of these variables at every
program point. However, it cannot infer the actual value
of any variable but gives a possible value set. Symbolic
execution [27] allows analysts to reason program behaviors
by building a logic formula which represents a program
execution. It may help reveal some valuable information in
binary, but cannot directly infer the actual value neither.

VII. CONCLUSION AND REMARKS

In this paper, we classified malware-related data in terms
of origin and form, and addressed the significance of internal
ciphertext data for malware forensics. We have presented
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a novel approach to automatically extract secrets from
malware executables without any human involvement. The
proposed approach consists of three major tasks to identify
secret-related code in binary, relocate and reuse it without
symbol information. We also developed a prototype system,
ASES, to extract external API information from malware
binaries. Our evaluation results on real world malware
showed that ASES could identify sensitive data effectively
and recover plaintext from executable systematically.

Although packing is beyond the scope of our approach,
the techniques we proposed in this paper are general and
can also be realized on top of dynamic malware analysis
platforms, such as BitBlaze [30] and Anubis [1], which have
the ability to unpack malware. Even though our techniques
to identify and relocate binary code ensures that only de-
cryptor is extracted from malware and executed in another
address space, we could enhance the security of the host
process with software-based fault isolation (SFI) [22], one-
way isolation [31] and other similar techniques.

For our future work, we plan to address the challenges
of other models of secret protection in malware along with
rigorous testing of our approach with other types of malware.
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