
lable at ScienceDirect

Digital Investigation 26 (2018) S59eS66
Contents lists avai
Digital Investigation

journal homepage: www.elsevier .com/locate/d i in
DFRWS 2018 USA d Proceedings of the Eighteenth Annual DFRWS USA
Automated forensic analysis of mobile applications on Android
devices

Xiaodong Lin a, Ting Chen b, *, Tong Zhu c, Kun Yang b, Fengguo Wei d

a Wilfrid Laurier University, Waterloo, Canada
b Center for Cyber Security, University of Electronic Science and Technology of China, Chengdu, China
c School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
d University of South Florida, Florida, USA
Keywords:
Automated forensic analysis
Android applications
Inter-component static analysis
Taint analysis
* Corresponding author.
E-mail addresses: xlin@wlu.ca (X. Lin), brokendra

tong.zh@foxmail.com (T. Zhu), 1481978708@qq.com
(F. Wei).

https://doi.org/10.1016/j.diin.2018.04.012
1742-2876/© 2018 The Author(s). Published by Elsevie
licenses/by-nc-nd/4.0/).
a b s t r a c t

It is not uncommon that mobile phones are involved in criminal activities, e.g., the surreptitious
collection of credit card information. Forensic analysis of mobile applications plays a crucial part in order
to gather evidences against criminals. However, traditional forensic approaches, which are based on
manual investigation, are not scalable to the large number of mobile applications. On the other hand,
dynamic analysis is hard to automate due to the burden of setting up the proper runtime environment to
accommodate OS differences and dependent libraries and activate all feasible program paths. We pro-
pose a fully automated tool, Fordroid for the forensic analysis of mobile applications on Android.
Fordroid conducts inter-component static analysis on Android APKs and builds control flow and data
dependency graphs. Furthermore, Fordroid identifies what and where information written in local
storage with taint analysis. Data is located by traversing the graphs. This addresses several technique
challenges, which include inter-component string propagation, string operations (e.g., append) and API
invocations. Also, Fordroid identifies how the information is stored by parsing SQL commands, i.e., the
structure of database tables. Finally, we selected 100 random Android applications consisting of 2841
components from four categories for evaluation. Analysis of all apps took 64 h. Fordroid discovered 469
paths in 36 applications that wrote sensitive information (e.g., GPS) to local storage. Furthermore,
Fordroid successfully located where the information was written for 458 (98%) paths and identified the
structure of all (22) database tables.
© 2018 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Mobile phones have become essential parts of our lives. Previ-
ously, mobile phoneswere used solely for communication purposes
only. Today, their capabilities have extended to include a myriad of
uses including gaming, social media, online banking and stock
trading. Accompanying the proliferation of mobile devices is the
presence of these devices in crime. In some instances, malicious
developers can collect sensitive information without user knowl-
edge. Mobile applications can also be used as tools to perpetrate
criminal activity or be on the person of those involved in untoward
or criminal behavior. Increasingly mobile devices are seen as key
gon@uestc.edu.cn (T. Chen),
(K. Yang), fwei@mail.usf.edu

r Ltd on behalf of DFRWS. This is a
evidence in many cases. An example being the iPhone of the at-
tackers in the 2015 San Bernadino attack (Wikipedia, 2015) and
mobile devices in Adnan Syeds murder trial (Sali).

Mobile applications process a significant amount of user infor-
mation. A large amount of sensitive information is stored locally on
smartphones (Scrivens and Lin, 2017). Therefore, acquiring and
analyzing artifacts generated bymobile applications is a crucial and
necessary step in the forensic analysis of mobile devices.

Digital forensics on mobile devices is a complicated affair. Data
acquisition and analysis in mobile phone forensics involve the
extraction of information from mobile phones followed by identi-
fying and concluding whether evidence is pertinent to the ongoing
investigation. Conducting a digital forensic investigation often en-
tails complete image extraction, however, it may be appropriate at
times to only extract and examine particular mobile applications. In
these cases, digital evidence on mobile devices are generated by
specific applications and being stored locally.
n open access article under the CC BY-NC-ND license (http://creativecommons.org/

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:xlin@wlu.ca
mailto:brokendragon@uestc.edu.cn
mailto:tong.zh@foxmail.com
mailto:1481978708@qq.com
mailto:fwei@mail.usf.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2018.04.012&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
https://doi.org/10.1016/j.diin.2018.04.012
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.diin.2018.04.012
https://doi.org/10.1016/j.diin.2018.04.012


X. Lin et al. / Digital Investigation 26 (2018) S59eS66S60
The digital forensic of local storage on mobile devices needs to
answer the following three questions: what is the information
stored (e.g., GPS); where is the information stored (e.g., file path);
and how the information is stored (e.g., the structure of a database
table). Extensive studies have been conducted in the past to identify
and analyze the artifacts generated by various applications
(Scrivens and Lin, 2017; Anglano, 2014). Dynamic analysis is the
most common practice. More specifically, applications are installed
on test phones or simulation environments. The application is
played manually over a period of time to generate forensic traces.
Unfortunately, this approach has several drawbacks.

First, it is hard to trigger all interesting program paths. Conse-
quently, criminal behaviors may not be discovered by dynamic
analysis. Moreover, it is nontrivial to identify what information is
stored and how it is stored. For example, a file generated by a
mobile application whose content is encoded or whose format is
unknown needs considerable efforts to analyze. An alternative
approach ismanual reverse engineering. However, manually parsing
documents for relevant artifacts was an arduous and long task. This
approach is time consuming and requires rich technical expertise.

Hence, the aforementioned issues have motivated us to pursue
an automated approach to address mobile application forensic
analysis. It is hard to automate dynamic analysis given a large
number of applications due to the differences in runtime environ-
ments (e.g., operation systems, dependent libraries).

This work proposes to automate forensic analysis on Android
applications via static analysis. Our approach overcomes the
shortcomings of manual analysis and dynamic analysis. Particu-
larly, our approach is scalable for a large number of applications
because no human intervention is required. Additionally, our
approach does not need to set up a test environment and can cover
all application codes.

We implement our method in Fordroid, an inter-component
analysis tool which is able to identify what, where and how the in-
formation is stored in local storage. Technically speaking, Fordroid
takes in an Android APK (without source code), then builds control
flow and data dependency graphs after decompiling the APK. Next,
Fordroid identifies the types of sensitive information written in
local storage through taint analysis.Fordroid then reveals theplace
or file path where information is stored by traversing the graphs.
Through our approach, we have overcome several of the technical
challenges resulting from inter-component string propagation,
string operations (e.g., append) and API invocations. Finally,
Fordroid identifies the structure of database tables by parsing SQL
commands extracted from applications.

We randomly selected 100 practical applications which belong
to four categories from a popular Chinese Android application
market, AppChina.1 Fordroid analyzed all applications consisting
of 2841 components in 3860 min (38 min per application). Results
show that there are 469 paths in more that one-third (36 out of
100) of applications which wrote sensitive information to local
storage. Fordroid successfully locates where sensitive informa-
tion was written for 458 (98%) paths. Moreover, the structure of all
(22) database tables which contain sensitive information was suc-
cessfully identified.

In summary, our work makes the following contributions.

(1) We design and implement Fordroid, an inter-component
static forensic tool for Android applications which auto-
matically identifies what, where and how sensitive infor-
mation is stored in local storage.
1 http://www.appchina.com/.
(2) We conduct experiments on 100 Android applications.
Fordroid discovers that approximately one-third of them
write sensitive information to local storage. Moreover,
Fordroid successfully locates the places sensitive infor-
mation is written for 98% paths and identifies the structure of
all database tables.

The remainder of this paper is organized as follows. Section 2
gives a motivating example. Section 3 describes the design and
implementation of Fordroid. Experimental results are given in
Section 4. The limitations of our approach are discussed in Section
5. We briefly introduce related studies in Section 6 and conclude
this paper in Section 7.
2. Motivating example

In this section, we provide an example of mobile application
forensic analysis. Such examples are commonplace and motivated
our development of Fordroid. We use a practical Android appli-
cation, agilebuddy2 to illustrate the difficulty of manually reverse
engineering and dynamic analysis to locate sensitive information.
agilebuddy is a game application with 703 KB large. It has 13
packages, 7 components, 80 classes and 559 functions. For ease of
presentation, we decompile3 this APK and illustrate its source in
Fig. 1.

Line 138 in function c(), class h, package com.uucunadsks.b
(Fig. 1(a)) produces a string v0_1 by calling the function a(). Line
139 creates a File object v1 using v0_1 as the file name. Line 140
creates another File object v4 which takes in two parameters, v1
and a string, v0_1. Finally, sensitive information is written into this
file in Line 171. It is difficult to reverse engineer this app to locate the
critical four lines of code.

We failed to create the file using dynamic analysis which
prompted us to investigate the reason. To begin, in order to trigger
the code in Line 138, several conditions should be satisfied. First,
the function c() should be called and then the Boolean arg6 (Line
124) should be false. Besides, h.g.length() should be no smaller than
h.f (Line 126) which is 8192 (Line 26). Moreover, h.e should not be
equal to null (Line 128). Additionally, an sdcard should be mounted
(Line 134). The last condition can be satisfied by preparing an
Android phone with sdcard mounted. We found the condition in
Line 128 to be easily satisfied through code inspection. Particularly,
h.e is a context object which is the this pointer of a component.

However, it is hard to meet the condition in Line 126. h.g is a
string, so this condition indicates that the length of this string
should be no shorter than 8 K bytes. h.g is used to log exception
information, as shown in Fig. 1(c) which invokes h.a() to generate
exception information. Please note that the code snippet in Fig. 1(c)
resides in another package, com.uucunadsdk.c which further in-
creases the difficulty of analysis. h.a() (Fig. 1(b)) appends a flag (i.e.,
arg6, Line 72), date, class name, method name, line number and
exception type (i.e., arg8, Line 73) into h.g. Hence, the space
required for logging one exception cannot be longer than 100 bytes.
Consequently, dynamic analysis must trigger at least 80 exceptions
before it creates a file.

Therefore, it is difficult for dynamic analysis to discover the file due
to the difficulty of triggering the program path to the critical code. The
limitations of manual reverse engineering and dynamic analysis
motivate us to develop an automated static approach. We will
demonstrate how Fordroid processes this APK in Section 3.
2 http://www.appchina.com/app/com.app.kg.agilebuddy.
3 Decompiled by JEB, https://www.pnfsoftware.com/jeb2/.

http://www.appchina.com/
http://www.appchina.com/app/com.app.kg.agilebuddy
https://www.pnfsoftware.com/jeb2/


(a) Code snippet in function c(), class h, package com.uucunadsdk.h

(b) Code snippet in function a(), class h, package com.uucunadsdk.h

(c) Code snippet in function b(), class m, package com.uucunadsdk.c

Fig. 1. How agilebuddy writes data to a file.

X. Lin et al. / Digital Investigation 26 (2018) S59eS66 S61
3. Approach

3.1. Overview

The current implementation of Fordroid is based on
Amandroid (Wei et al., 2014), an inter-component static analysis
platform for Android applications. We will briefly introduce
Amandroid here. Amandroid determines points-to information (a
core underlying problem in almost all static analyses for Android
applications) in a flow and context-sensitive way. It first decom-
piles an APK into an IR representation and then builds an abstract
syntax tree (AST) from it. Amandroid builds inter-procedural
control flow graph (ICFG) of the whole application and treats
inter-component communication (ICC) just like method calls.
Subsequently, it builds inter-component data flow graph (IDFG)
which associates ICFG with reaching facts and then derives data
dependence graph (DDG) from IDFG. Moreover, Amandroid pro-
vides a rich set of APIs for developing analysis applications.

Fig. 2 presents the architecture of Fordroid which takes in an
Android APK and produces a report containing what, where and
how sensitive information is stored in local storage. Fordroid
takes advantages of Amandroid to decompile APKs, build AST, ICFG,
IDFG, and DDG, and use one of its sample applications, taint
analyzer to find the types of sensitive information written to local
storage. Technically speaking, taint analysis (Wikipedia and Taint
checking) consists of taint source, taint propagation and taint
sink. In the context of tracking information leakage, a taint source is
the place where sensitive information enters an application (e.g.,
get the location by invoking getLastKnownLocation()). Taint prop-
agation tracks the propagation of sensitive information along the
execution of program instructions. A taint sink is the place where
sensitive information leaks outside of the application (e.g., write
data into a local file by invoking Write()).

Android applications typically obtain and leak sensitive infor-
mation through invoking APIs, so Fordroid monitors the related
APIs. Amandroid already supports taint analysis, so Fordroid ex-
tends the list of taint sinks with five more APIs. Amandroid reports
the paths of information leakage, each of which consists of a taint
source, the propagation path and a taint sink. Hence, from Aman-
droid, we discover the type of sensitive information and the code
locations of APIs which acquire and leak information, respectively.
Fordroid has 970 lines of Scala code.

To identify where the sensitive information is stored, Fordroid
traverses the graphs backward from the code location of the taint
sink until a string (e.g., file path) indicating the storage location is
reached. Fordroid implements three modules (inside the dotted
box in Fig. 2) to overcome three technical challenges which are API
invocations, string operations and inter-component string propa-
gation (ICSP) during graph traversing, respectively. Finally, For-
droid unveils the structure of database tables by parsing SQL
commands which create new tables.

We will go into detail on the approach Fordroid takes to find
the locationwhere sensitive information is stored and the structure
of database tables in more detail in the following sections.
3.2. Data storage modes

Android applications typically have three modes to store infor-
mation in local storage, i.e., stored in SharedPreferences, database
or to file. Fordroid handles these three modes differently because
they require different APIs and code patterns. By checking taint
sinks, Fordroid can identify which mode a writing operation
follows. For example, an application invokes Editor.putString(),
SQLiteDatabase.insert() and FileWriter.write() to record data in
SharedPreferences, database and file, respectively.
3.2.1. Handling SharedPreferences
We propose Algorithm 1 to find the path of SharedPreferences

whose content contains sensitive information. This algorithm takes
in a taint sink, sk indicating the code location where sensitive in-
formation is written into SharedPreferences, AST, CFG and DDG.
Firstly, Fordroid finds the caller (i.e., editor) of the taint sink, sk
(Line 1) and then searches backward in CFG and DDG for the
definition location (i.e., ed_def) of the caller (Line 2). Note that the
use-definition (Wikipedia) relationship is available after building
IDFG (Inter-component Data Flow Graph, Fig. 1).

Then, Fordroid searches AST for the SharedPreferences object,
sp (Line 3). Afterwards, Fordroid searches the graphs backward to
find the definition location of sp. There are three approaches to
define a SharedPreferences object, which are invoking getDefault-
SharedPreferences(), getPreferences(), and getSharedPreferences().
The first two APIs produce SharedPreferences in a default path, so
Fordroid returns a default string (e.g., “defaultSharedPrefer-
ences”) (Line 8). If getSharedPreferences() is used (Line 6), its first
parameter is the file path (Line 7).



decompile build ICFG build IDFG build DDG taint analysis

traverse 
graphsAPI modelhandle 

str op
handle 
ICSP

parse sql 
cmd

what

wherehow

Amandroid

build AST

Fig. 2. Architecture of Fordroid.

Fig. 3. A code snippet in function b(), class a, package com.kuguo.pushads of gobang.

X. Lin et al. / Digital Investigation 26 (2018) S59eS66S62
We use an example (Fig. 3) to explain Algorithm 1 in plain
words. The analyzed APK, gobang4 is a game and the code snippet
locates in function b(), class a of package com.kuguo.pushads.
Sensitive information is written to SharedPreferences by invoking
putString() at Line 443. The caller is v0_1 and its definition site is
Line 441. Afterwards, Fordroid finds its corresponding Share-
dPreferences object, v2 from the AST and then finds v2's definition
site, Line 423. Finally, Fordroid discovers the path in the first
parameter of getSharedPreferences().

Algorithm 1. Find the path of SharedPreferences.

3.2.2. Handling databases
If the application stores data in a database, we need to know

both the name of database and the name of table. We propose
Algorithm 2 to find both names, which takes in a taint sink, sk,
AST, CFG and DDG. It is not difficult to obtain the table name
because it is the first parameter of sk (Line 1). Then, Fordroid
finds the caller, db, (i.e., SQLiteDatabase) of sk (Line 2). Afterwards,
Fordroid traverses the graphs to find the definition site of db
(Line 3). After searching the AST, Fordroid finds an object, helper,
which extends the class SQLiteOpenhelper (Line 4). Then, For-
droid searches for the constructor, cons of helper in the AST (Line
5). Fordroid then searches for the invocation of the constructor
(i.e., super, Line 6) of helper's superclass (i.e., SQLiteOpenhelper).
Finally, Fordroid finds the database name in the second
parameter of super (Line 7).
4 http://www.appchina.com/app/com.yj.gobang.
Algorithm 2. Find database name and table name.

We also use gobang to explain Algorithm 2. This application
writes sensitive information into a database table at Line 45,
Fig. 4(a) by invoking insert(). The table name (i.e., downloads) is the
first parameter of insert(). Fordroid finds the caller of insert(),
which is v0, and then finds v0s definition site, Line 38. After
searching AST, Fordroid gets the object this.a, whose constructor
a() is shown in Fig. 4(b) a() invokes the constructor of its superclass
at Line 9. Finally, Fordroid finds the database name (i.e., down-
loads) in the second parameter.

Algorithm 3. Find file path.

http://www.appchina.com/app/com.yj.gobang


(a) Code snippet in function a(), class b, package com.kuguo.a

(b) Code snippet in class a, package com.kuguo.a

Fig. 4. Code snippets in package com.kuguo.a of gobang.

X. Lin et al. / Digital Investigation 26 (2018) S59eS66 S63
3.2.3. Handling files
Android applications can use FileWriter, BufferedWriter and

FileOutputStream to write files. Fordroid handles all of these
cases. For ease of presentation, this paper describes writing files
with FileWriter because the three cases share the similar pro-
gramming pattern. The procedure is shown in Algorithm 3, which is
an iterative process because the first parameter of new File() can be
another File object.

We explain this algorithm using the example shown in Fig. 1(a)
for ease of understanding. Taint analysis reveals that in Line 171,
Fig. 1(a) writes sensitive information to a file by invoking write().
Fordroid gets the caller of write(), fw at Line 1, Algorithm 3. Then,
it searches the graphs for the definition site fw_def of fw (Line 2,
Algorithm 3). fw_def locates at Line 162, Fig. 1(a). Fordroid, then,
gets the first parameter, v4 at Line 162, Fig. 1(a). FileWriter has two
constructors. The first accepts a string, which is the file path. In this
case, Fordroid simply gets the parameter (Line 5, Algorithm 3).

The second constructor takes in two parameters and the first is a
File object, as shown in Line 162, Fig. 1(a). In this case, Fordroid
searches for its definition site, Line 140, Fig. 1(a). Then, Fordroid
invokes getPathFromFile() (Line 8, Algorithm 3) iteratively. In this
routine, Fordroid gets the parameter number and the first
parameter (Line 11 and 12, Algorithm 3). If new file() accepts only
one parameter, the parameter should be the file path (Line 13,
Algorithm 3). If new File() takes in two parameters, the second one
should be the latter part of file path (Line 15, Algorithm 3).

If the first parameter is a string, it should be the first part of file
path (Line 19, Algorithm 3). If the first parameter is a File object, as
shown in this example, Fig. 1(a), Fordroid searches for the defi-
nition site of the file object (Line 17, Algorithm 3). In this example,
the definition site is Line 139, Fig. 1(a). Afterwards, Fordroid in-
vokes getPathFromFile() again (Line 18, Algorithm 3). Particularly,
Fordroid finds that new file() at Line 139, Fig. 1(a) accepts two
strings (refer to str1 and str2) and then returns the string str1/str2
as the file path. Consequently, the file path in this example is str1/
str2/logs/str3.log, where str1, str2 and str3 refer to the path of
external storage, package name and date, respectively.
Fig. 5. A code snippet from class a, package com.kuguo.a.
3.3. Handling inter-component string propagation

We are particularly interested in strings since they can represent
the paths of SharedPreferences, database names, table names, file
paths and SQL commands. Fordroid needs to track string
propagation across components because a string can be sent from
one component to another. Fordroid is based on Amandroid (Wei
et al., 2014), and allows us to find connection between components.
In other words, Fordroid is aware of the target components of
intents (i.e., messages) sent by a component. The remaining task for
Fordroid is understanding how strings are stored in and retrieved
from the intents.

To achieve this, Fordroidmodels two APIs, putStringExtra() for
packing a string into an intent and getStringExtra() for extracting a
string from an intent. Please note that putStringExtra() is invoked
by the component which sends the intent and getStringExtra() is
invoked by the component which receives the intent. Hence, by
modeling them, Fordroid maps the connections of strings across
components.

3.4. String operations

String operations (e.g., append, substring, index) are commonly
used in Android applications to build various strings. Although string
analysis (Li et al., 2015a) is powerful to infer the structure of strings, it
results in high overhead. Moreover, although Java allows various
string operations, append (e.g., h.e.getPackageName()þ “/logs/”, Line
139, Fig. 1(a)) is the most widely-used string operation involving the
construction of the path of SharedPreferences, database name, table
name and file path. Therefore, Fordroid models the API String-
Builder.append() to avoid the high overhead of string analysis.

3.5. API invocations

File paths often contain substrings created via API calls. Recall
the example in Fig. 1(a), the application invokes Date() (Line 138),
getExternalStorageDirectory() (Line 139) and getPackageName()
(Line 139) to retrieve the current date, the path of external storage
and the package name, respectively. All of these strings constitute
the file path. To overcome the challenge, Fordroid models com-
mon APIs whose return values can be parts of the path of Share-
dPreferences, database names, table names and file paths.

3.6. Identifying the structure of database table

To reveal how sensitive information is stored in local storage,
Fordroid identifies the structure of database tables from APKs.
Technically, Fordroid monitors the API, execSQL() for executing
SQL commands and then extracts SQL commands from its param-
eters. Then, Fordroid finds the SQL command for creating data-
base table by looking for the keyword “CREATE TABLE”. Finally,
Fordroid parses the SQL command to retrieve the table name and
the name and type of each column.

Fig. 5 shows an example from gobang. After parsing the SQL
command at Line 13, Fordroid is aware that the table is named
“downloads” and contains six columns. As well, the name and type
of each column are also obtained, e.g., the first column is _id which
is an integer and the primary key of this table.

4. Evaluation

To evaluate our approach, we randomly select 100 practical ap-
plications belonging to four categories fromAppChina. Fordroid is



Table 1
Analysis results of 100 Android applications.

category #APKs # comp. time (min) # paths # paths to storage where # APKs with paths # APKs write storage

sp db file suc. fa.

comm. 26 978 1827 310 27 0 7 33 1 11 6
enter. & game 26 278 207 422 196 18 8 221 1 11 8
news & info. 24 715 902 360 30 4 10 38 6 16 10
tool 24 870 924 1221 163 0 6 166 3 18 12
total 100 2841 3860 2313 416 22 31 458 11 56 36
ave. / 28.4 38.6 23.1 41.6 2.2 3.1 45.8 1.1 / /

(a) Write file in class b, package com.yulong.d

(b) A code snippet in function onCreate(), class ImageDetailActivity,
package com.yulong.ttwindow

(c) Generate file path in in class b, package com.yulong.d

Fig. 6. String operations that cannot be handled by Fordroid.

X. Lin et al. / Digital Investigation 26 (2018) S59eS66S64
installed in a desktop equipped with 12 Intel E5-2640 CPUs and
20 GB main memory.

4.1. Results

Fordroid completes the analysis of 100 applications in about
64 h and the results are shown in Table 1. The first four columns
provide the category, number of APKs, number of components, and
the time for analysis, respectively. Column 5 reports the number of
paths discovered by taint analysis, which considers all taint sinks
defined in Amandroid. Hence, column 5 includes other venues to
leak information, e.g., SMS message, Internet. Columns six to eight
provide the number of paths writing sensitive information to
SharedPreferences, database and file, respectively.

Columns nine and ten present the number of paths Fordroid

succeeds and fails to find where sensitive information is written to.
Column 11 provides the number of APKs leaking sensitive infor-
mation and column 12 shows the number of APKs writing sensitive
information to local storage. Rows three to six present the statistics
of four categories (i.e., communication, entertainment & game,
news& information, and tool). Row seven denotes the total number
and the last row presents the averages per application.

We have made several observations from the experimental re-
sults. Firstly, more than a half (56%) of applications leak sensitive
information and more than one-third (36%) of applications write
sensitive information to local storage. Hence, information leakage is
prevalent even if all those applications are not malware. Another
insight is that it is also interesting to investigate information
leakage via other venues because 20 applications leaked sensitive
information without writing local storage. Secondly, sensitive in-
formation is more likely to be written into SharedPreferences (416),
compared to database (22) and file (31). This observation is not
surprising because Android recommends developers to use
SharedPreferences, which is a light-weight file.

Moreover, Fordroid is efficient because it needs just 38 min to
analyze one application on average. Furthermore, Fordroid is
effective in locating where sensitive information is stored, as shown
in Table 1 where Fordroid finds 458 out of 469 (98%). We will
investigate the 11 paths Fordroid fails to identify locations in Sec-
tion 4.2. Furthermore, Fordroid successfully reveals the structure of
all (i.e., 22) database tables which contain sensitive information.

4.2. Investigation of failed cases

Fordroid failed to identify the sensitive data locations for 11
paths (2%). We investigated the 11 paths manually and concluded
this to be due to two reasons which are string operations (3 paths)
and input dependency (8 paths).

Fig. 6 gives code snippets from ttwindow5 which contains string
operations resulting in unidentifiable file path by Fordroid. Line 95,
5 http://www.appchina.com/app/com.yulong.standalone.ttwindow.
Fig. 6(a) writes sensitive information to a file which is created at Line
92. The file path is passed as a parameter, arg5 to function a(), which
is invoked at Line 397, Fig. 6(b). By searching for the definition site of
v2 (at Line 397), Fordroid locates Line 393 and is aware of the file
path generated by invoking com.yulong.d.b.a(), whose code is shown
in Fig. 6(c). The string v2 (Line 33) is a result of the hashCode()
operation and a substring() operation of the string arg11. However,
the current implementation of Fordroid does not support such two
string operations. We plan to extend Fordroid with the capability
of handling more string operations in future work.

Fig. 7 presents code snippets from radish6 which contains a file
path depending on its input. Line 118, Fig. 7(a) writes sensitive
information into a file and the OutputStream object is passed as a
parameter by invoking the copy() function at Line 106. Fordroid
backtracks the File object, arg3 and finds the corresponding object,
this.imagefile at Line 51, Fig. 7(a). Next, we found that this.imagefile
depends on v3 and v3 results from this.imageUrl which comes from
a parameter of the function doInBackground() (Line 36). This
6 http://www.appchina.com/app/com.mofang.radish.

http://www.appchina.com/app/com.yulong.standalone.ttwindow
http://www.appchina.com/app/com.mofang.radish


Fig. 8. doudizhugm writes location information in SharedPreferences.

(a) Write file in class BitmapUtil, package com.mofang.radish.utils

(b) Create file in class LruImageAsyncTaskForAcitivity,
package com.mofang.radish.utils

Fig. 7. A file path depends on input.

X. Lin et al. / Digital Investigation 26 (2018) S59eS66 S65
function is a callback function for executing asynchronous tasks
which receive inputs. To identify input data, Fordroid should
work in tandem with dynamic analysis.

4.3. Case study of doudizhugm

doudizhugm7 is a card game with 2837 KB, which consists of
21 packages, 12 components, 259 classes and 2055 functions.
Fordroid found 123 paths by which sensitive information was
leaked. Among them, 78 paths wrote sensitive data into local stor-
age (i.e., 70 to SharedPreferences and 8 to database). All the eight
paths to the database write data into a table named “downloads” of
a database “downloads”. doudizhigm has the same behaviors of
obtaining access to database as gobang (Section 3.2.2) because they
incorporate the same package com.kuguo. We provide a code
snippet (Fig. 8) which leaks information to SharedPreferences.

Fordroid discovers two taint paths (refer to p1 and p2) after
taint analysis. The taint source of p1 locates in Line 35, class Set-
Preferences, package com.airpush.android which collects the
longitude when the location changes. The taint sink is located in
Line 273. Similarly, p2 gets the latitude at Line 36 and writes it into
SharedPreferences at Line 274. Fordroid firstly finds the caller v1
and then locates its definition site at Line 260. Finally, it extracts the
path of SharedPreferences from the first parameter of getShar-
edPreferences(), which is “dataPrefs”.

5. Discussion

This section discusses several limitations of our work. The
implementation of Fordroid is based on Amandroid, and hence
Fordroid shares similar shortcomings with Amandroid. For
example, Amandroid is path-insensitive, so it may take infeasible
paths into consideration. Besides, as a static analysis tool, it is not
easy for Amandroid to analyze highly obfuscated applications.
7 http://www.appchina.com/app/com.supergame.game.doudizhugm.
Additionally, some features of Java language, e.g., reflection will
increase the difficulty of static analysis.

Although Fordroid is built on top of Amandroid, there are little
technical obstacles to adapt it to other tools because Fordroid

needs AST, control flow and data flow information which are sup-
ported by most Android static analysis tools. Fordroid reuses the
taint analyzer of Amandroid. A recent survey shows that taint
analysis is the most applied technique in Android static analysis
tools (Li et al., 2017).

Fordroid identifies the structure of database tables, rather
than SharedPreferences and files. To reverse engineer the format of
files written by the application, advanced techniques (e.g.,
Dispatcher (Caballero et al., 2009) infers command format sent by
the application) should be incorporated, which will be our future
work. Moreover, Android applications sometimes include native
code, however, Fordroid only processes Dalvik bytecode. Addi-
tionally, we plan to extend Fordroid to support more string
operations.

In summary, Fordroid is suitable for analyzing normal appli-
cations (e.g., those in application markets as shown in Section 4).
However, to analyze Android malware, Fordroid should coop-
erate with other techniques (e.g. deobfuscation, unpacking, binary
analysis, dynamic analysis) because malware is likely to adopt so-
phisticated obfuscation, packing and native code to protect itself.

6. Related work

To the best of our knowledge, Fordroid is the first work con-
ducting digital forensics of Android applications to unveil what,
where and how sensitive information is stored in local storage in a
fully automatic way. Therefore, Fordroid can be used to forensi-
cally analyze any Android applications. Currently, a variety of
commercial mobile phone forensic systems have become available,
such as MPEþ, DC4500, FT, Fanaldata. However, they only support a
limited number of mobile applications. Extensive studies have been
conducted in the past to identify and analyze the artifacts gener-
ated by various mobile applications. Particularly, the popular ap-
plications, including WhatsAPP, Weixin, Facebook Messenger and
Google Hangouts (Scrivens and Lin, 2017; Anglano, 2014).

Unfortunately, more obscure or less popular applications require
more intensive studies since these applications also generate
forensically rich data. For example, Pok�emon GO, a popular
location-based virtual-reality game developed by Niantic, keeps
track of the players' location in the background (Hafner, 2016).
However, due to a lack of studies on the applications, it is hard to
find where all the important information is stored. Furthermore,
the common practice of existing works is to utilize manual tests,
more specifically, applications that are installed on test phones that

http://www.appchina.com/app/com.supergame.game.doudizhugm


X. Lin et al. / Digital Investigation 26 (2018) S59eS66S66
will be used in simulated environments. The application is then
played for a period of time to generate forensic traces. Unfortu-
nately, this approach is problematic as discussed early. It has
become obvious manual approaches will not meet today's re-
quirements for mobile application forensic analysis.

Next, we briefly introduce static techniques for analyzing
Android applications because Fordroid belongs to such category.

Flowdroid (Arzt et al., 2014) proposes a precise model of An-
droids lifecycle that allows the analysis to properly handle callbacks
invoked by the Android framework. Flowdroid is context, flow, field
and object-sensitive. This allows the analysis to reduce the number
of false alarms. However, Flowdroid over-approximates ICC. EPICC
(Octeau et al., 2013) reduces the discovery of ICC to an instance of
the inter-procedural distributive environment (IDE) problem, and
hence it scales to large numbers of applications. IC3 (Octeau et al.,
2015) defines ICC analysis as the problem of multi-valued com-
posite (MVC) constant propagation and designs a COAL solver to
infer ICC values.

Iccta (Li et al., 2015b) integrates Flowdroid, EPICC and IC3, and
takes advantages of their strengths. DroidSafe (Gordon et al., 2015)
combines a comprehensive, accurate, and precise model of the
Android runtime with static analysis design decisions to achieve
high analysis precision. Edgeminer (Cao et al., 2015) addresses the
challenge of Android callbacks by statically analyzing the entire
Android framework to automatically generate API summaries that
describe implicit control flow transitions.

Yang et al.’s work (Yang et al., 2015) reduces control flow
analysis problem to modeling of the possible sequences of call-
backs and then proposes to represent an application by a callback
controleflow graph (CCFG). HornDroid (Calzavara et al., 2016)
abstracts the semantics of Android applications as Horn clauses
and formulates security properties as a set of proof obligations,
which are solved by invoking off-the-shelf satisfiability modulo
theories (SMT) solvers. Amandroid (Wei et al., 2014) performs
data flow and data dependence analysis for each component of
the analyzed application. Amandroid also tracks the inter-
component communication activities, and hence it can be used
to address security problems that result from interactions among
multiple components.

7. Conclusion

Manual digital forensics for Android applications is time-
consuming and hard to scale to large number of applications. We
propose and implement a fully automated approach, Fordroid to
unveil what, where and how sensitive information is stored in local
storage.We overcome the challenges resulting from inter-component
string propagation, string operations and API invocations. Fordroid
completes the analysis of 100 randomly selected Android applica-
tions in about 64 h. Results demonstrate that more than 1/3 out of
them leaked sensitive information to local storage. Moreover,
Fordroid successfully locateswhere sensitive information iswritten
to for 98% paths and identifies the structure of all database tables
which contain sensitive data.

In the future, we plan to enhance Fordroid with stronger
string analysis abilities and incorporate other techniques in order to
reverse engineering file formats.

Acknowledgement

This work is supported in part by NSERC (Natural Sciences and
Engineering Research Council of Canada), Canada, and National
Key Research and Development Plan (2017YFB0802900), Project
2117H14243A and Sichuan Province Research and Technology
Supporting Plan, China.

References

Anglano, C., 2014. Forensic Analysis of Whatsapp Messenger on Android Smart-
phones, pp. 201e213.

Arzt, S., Rasthofer, S., Fritza, C., Bodden, E., Bartel, A., Klein, J., Traon, Y.L., Octeau, D.,
McDaniel, P., 2014. Flowdroid: precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. In: Proc. PLDI.

Calzavara, S., Grishchenko, I., Maffei, M., 2016. Horndroid: practical and sound static
analysis of android applications by smt solving. In: Proc. EuroS&P.

Cao, Y., Fratantonio, Y., Bianchi, A., Egele, M., Kruegel, C., Vigna, G., Chen, Y., 2015.
Edgeminer: Automatically detecting implicit control flow transitions through
the android framework. In: Proc. NDSS.

Gordon, M.I., Kim, D., Perkins, J.H., Gilham, L., Nguyen, N., Rinard, M.C., 2015. In-
formation flow analysis of android applications in droidsafe. In: Proc. NDSS.

Hafner, J., 2016. While you track Pok�emon, Pok�emon Go tracks you. https://eu.
usatoday.com/story/tech/nation-now/2016/07/11/while-you-track-pokmon-
pokmon-go-tracks-you/86955092/.

Juan Caballero, C.K., Poosankam, P., Song, D., 2009. Dispatcher: enabling active
botnet infiltration using automatic protocol reverse-engineering. In: Proc. CCS.

Li, D., Lyu, Y., Wan, M., Halfond, W.G., 2015. String analysis for java and android
applications. In: Proc. FSE.

Li, L., Bartel, A., Bissyande, T.F., Klein, J., Traon, Y.L., Arzt, S., Rasthofer, S., Bodden, E.,
Octeau, D., McDaniel, P., 2015. Iccta: detecting inter-component privacy leaks in
android apps. In: Proc. ICSE.

Li, L., Bissyande, T.F., Papadakis, M., Rasthofer, S., Bartel, A., Octeau, D., Klein, J.,
Traon, Y.L., 2017. Static analysis of android apps: a systematic literature review.
Inf. Software Technol. 88.

Octeau, D., McDaniel, P., Jha, S., Bartel, A., Bodden, E., Klein, J., Traon, Y.L., 2013.
Effective inter-component communication mapping in android with epicc: an
essential step towards holistic security analysis. In: Proc. USENIX Security.

Octeau, D., Luchaup, D., Dering, M., Jha, S., McDaniel, P., 2015. Composite constant
propagation: application to android inter-component communication analysis.
In: Proc. ICSE.

Sali, K. The Cell Phone Evidence in Adnan Syeds Case Illustrates a Depressingly
Common Problem. URL https://www.huffingtonpost.com/kevin-sali/the-cell-
phone-evidence-in-adnan-syeds-case_b_9202422.html.

Scrivens, N., Lin, X., 2017. Android digital forensics: data, extraction and analysis. In:
Proc. ACM Turing 50th Celebration Conference-China.

Wei, F., Roy, S., Ou, X., 2014. Amandroid: a precise and general inter-component
data flow analysis framework for security vetting of android apps. In: Proc. CCS.

Wikipedia, 2015. San Bernardino Attack. https://en.wikipedia.org/wiki/2015_San_
Bernardino_attack.

Wikipedia, Taint checking. URL https://en.wikipedia.org/wiki/Taint_checking.
Wikipedia. URL https://en.wikipedia.org/wiki/Use-define_chain.
Yang, S., Yan, D., Wu, H., Wang, Y., Rountev, A., 2015. Static control-flow analysis of

user-driven callbacks in android applications. In: Proc. ICSE.

http://refhub.elsevier.com/S1742-2876(18)30188-9/sref1
http://refhub.elsevier.com/S1742-2876(18)30188-9/sref1
http://refhub.elsevier.com/S1742-2876(18)30188-9/sref1
http://refhub.elsevier.com/S1742-2876(18)30188-9/sref2
http://refhub.elsevier.com/S1742-2876(18)30188-9/sref2
http://refhub.elsevier.com/S1742-2876(18)30188-9/sref2
http://refhub.elsevier.com/S1742-2876(18)30188-9/sref4
http://refhub.elsevier.com/S1742-2876(18)30188-9/sref4
http://refhub.elsevier.com/S1742-2876(18)30188-9/sref4
http://refhub.elsevier.com/S1742-2876(18)30188-9/sref5
http://refhub.elsevier.com/S1742-2876(18)30188-9/sref5
http://refhub.elsevier.com/S1742-2876(18)30188-9/sref5
http://refhub.elsevier.com/S1742-2876(18)30188-9/sref6
http://refhub.elsevier.com/S1742-2876(18)30188-9/sref6
https://eu.usatoday.com/story/tech/nation-now/2016/07/11/while-you-track-pokmon-pokmon-go-tracks-you/86955092/
https://eu.usatoday.com/story/tech/nation-now/2016/07/11/while-you-track-pokmon-pokmon-go-tracks-you/86955092/
https://eu.usatoday.com/story/tech/nation-now/2016/07/11/while-you-track-pokmon-pokmon-go-tracks-you/86955092/
http://refhub.elsevier.com/S1742-2876(18)30188-9/sref3
http://refhub.elsevier.com/S1742-2876(18)30188-9/sref3
http://refhub.elsevier.com/S1742-2876(18)30188-9/sref8
http://refhub.elsevier.com/S1742-2876(18)30188-9/sref8
http://refhub.elsevier.com/S1742-2876(18)30188-9/sref9
http://refhub.elsevier.com/S1742-2876(18)30188-9/sref9
http://refhub.elsevier.com/S1742-2876(18)30188-9/sref9
http://refhub.elsevier.com/S1742-2876(18)30188-9/sref10
http://refhub.elsevier.com/S1742-2876(18)30188-9/sref10
http://refhub.elsevier.com/S1742-2876(18)30188-9/sref10
http://refhub.elsevier.com/S1742-2876(18)30188-9/sref11
http://refhub.elsevier.com/S1742-2876(18)30188-9/sref11
http://refhub.elsevier.com/S1742-2876(18)30188-9/sref11
http://refhub.elsevier.com/S1742-2876(18)30188-9/sref12
http://refhub.elsevier.com/S1742-2876(18)30188-9/sref12
http://refhub.elsevier.com/S1742-2876(18)30188-9/sref12
https://www.huffingtonpost.com/kevin-sali/the-cell-phone-evidence-in-adnan-syeds-case_b_9202422.html
https://www.huffingtonpost.com/kevin-sali/the-cell-phone-evidence-in-adnan-syeds-case_b_9202422.html
http://refhub.elsevier.com/S1742-2876(18)30188-9/sref14
http://refhub.elsevier.com/S1742-2876(18)30188-9/sref14
http://refhub.elsevier.com/S1742-2876(18)30188-9/sref15
http://refhub.elsevier.com/S1742-2876(18)30188-9/sref15
https://en.wikipedia.org/wiki/2015_San_Bernardino_attack
https://en.wikipedia.org/wiki/2015_San_Bernardino_attack
https://en.wikipedia.org/wiki/Taint_checking
https://en.wikipedia.org/wiki/Use-define_chain
http://refhub.elsevier.com/S1742-2876(18)30188-9/sref19
http://refhub.elsevier.com/S1742-2876(18)30188-9/sref19

	Automated forensic analysis of mobile applications on Android devices
	1. Introduction
	2. Motivating example
	3. Approach
	3.1. Overview
	3.2. Data storage modes
	3.2.1. Handling SharedPreferences
	3.2.2. Handling databases
	3.2.3. Handling files

	3.3. Handling inter-component string propagation
	3.4. String operations
	3.5. API invocations
	3.6. Identifying the structure of database table

	4. Evaluation
	4.1. Results
	4.2. Investigation of failed cases
	4.3. Case study of doudizhugm

	5. Discussion
	6. Related work
	7. Conclusion
	Acknowledgement
	References


