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a b s t r a c t

We present research on the limitations of detecting atypical activity by a hypervisor from the perspective
of a guest domain. Individual instructions which have virtual machine exiting capability were evaluated,
using wall timing and kernel thread racing as metrics. Cache-based memory access timing is performed
with the Flush þ Reload technique. Analysis of the potential methods for detecting non-temporal
memory accesses are also discussed. It is found that a guest domain can use these techniques to
reliably determine whether instructions or memory regions are being accessed in manner that deviates
from normal hypervisor behavior.
© 2018 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cloud computing offers many benefits to organizations of all sizes:
economies-of-scale net cost savings, elasticity provides seamless
scalability, and consolidation of InformationTechnology (IT) resources
improves service quality and security. To facilitate cloud migration,
modern hypervisors aim to minimize the differences between
executing in a virtualized environment and on bare-metal by using
hardware extensions to multiplex virtual machines (VMs) seamlessly
and with minimal performance impact. The hypervisor's position of
privilege on the system can come with a negative: a compromised
hypervisor is able to introspect and corrupt its VMs, bypassing data
protections and giving the adversary control over processing.

The ability of a cloud tenant to detect if and when a host is
behaving in an unorthodox or outright intrusive fashion can be
valuable in determining whether the platform is to be trusted. As
numerous organizations continuemigrating services to the cloud, it
is essential that software be able to determine the trustworthiness
of the environment in which it is executing as well as optimally
respond to possible threats.

In this paper, we present our findings regarding the utilization
of hardware side-channels to gain insight into computing envi-
ronments, the limitations of this technique, and the potential for
developing a framework to determine optimal responses. Using
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hardware side-channel information, we have evaluated the feasi-
bility of using shared CPU resources to characterize privileged
software. Herein, we provide a body of research regarding the
limitations of environmental characterization of virtualized
platforms.

Our tool, Environmental Characterization and Response (ECR),
analyzes instructions and memory accesses on a guest system
which has been deployed on a hypervisor. ECR leverages a variety of
metrics to determine the potential presence - or lack - of intro-
spection, and serves to establish the limits of attack and limits of
detection touched upon earlier. The ECR effort developed a novel
technology capable of characterizing a cloud platform's privileged
architectural software from within an unprivileged environment,
providing the foundation for development of autonomous,
self-protecting cloud applications.

Our contributions are as follows:

� Provide an in-depth overview of the effects of virtualization on
shared hardware resources from amicro-architectural perspective

� Evaluate the efficacy of several timing techniques to supply a
robust baseline to build detection systems

� Perform extensive experiments on the capability and limitations
of detecting a variety of introspection techniques, including
hypervisor accesses to particular in-guest memory ranges,
instruction trapping and memory access tracing
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2. Related work

The topic of malicious hypervisors has been widely discussed
and has produced a significant body of work over the years. From
the outset, there have been concerns that adding layers underneath
the operating system (OS) will result in systems that may under-
mine, or outright compromise, the security and privacy of the OS
(Rutkowska, 2006; Zovi, 2006).

For the detection of such hypervisors, many techniques have
relied heavily on finding implementation-specific artifacts (Ferrie,
2007). Widely available open-source tools today showcase this
approach by detecting hardware or software artifacts exposed to the
guests by specific hypervisors (Paranoid Fish, 2018). It has also been
proposed to utilize even lower layers for detection, such as the
SystemManagement Mode (Rutkowska andWojtczuk, 2008). There
has also been research which evaluated the notion of looking for
hardware side-effects that a hypervisor would inadvertently intro-
duce to the system (Thompson; Brengel et al., 2016; Fritsch, 2008).

In today's computing environment, however, the existence of a
hypervisor is commonplace. Most of the research efforts thus far
have not made a distinction between the detection of a hypervisor
and the detection of an introspecting hypervisor. The research that
is available is focused on the evaluation of the stealth attributes of
malware analysis systems, such as Ether (Dinaburg et al., 2008) or
DRAKVUF (Lengyel et al., 2014). Research into the limitations
of these stealth approaches mainly involved looking for specific
artifacts, such as discrepancies in the behavior of timing sources as
these are being manipulated by the sandbox (P�ek et al., 2011).

3. Background

In the following section we provide a brief but in-depth back-
ground for the concepts that ECR is built upon.

3.1. Virtualization

The creation of a VM that behaves as a typical hardware-based
machine running a standard OS, but is separated from the actual
physical hardware resources of the hosting system is commonly
referred to as virtualization. This technology has lent itself to the
birth of the cloud, which offers immense cost-savings through
data-center consolidation, centralization of IT, and purchasing
power of providers, however, there are security concerns with
moving to cloud infrastructure. The most serious of these concerns
being the risk of malicious software compromising a hypervisor
and utilizing this privileged position to interfere with the operation
of VMs, or observe sensitive data in those VMs.

3.2. Hypervisors

A hypervisor is a piece of privileged, low-level software that
supervises the execution of guest VMs, and is typically responsible
for maintaining isolation between those VMs. To provide a guest
experience consistent with running on real hardware, a hypervisor
typically shares hardware resources between VMs, directly or
indirectly multiplexing access to real hardware resources. There are
two generally accepted classifications of hypervisors: type-1 and
type-2. A type-1 hypervisor is a bare-metal hypervisor, inwhich the
hypervisor runs directly on the hardware. A type-2 hypervisor is a
hosted hypervisor, in which a hypervisor runs as a process on the
base OS. In this effort, the Xen Project hypervisor, which is a type-1
hypervisor, was utilized.

Typically in the Xen architecture, the core hypervisor only
directly arbitrates access to a few critical system resources, including
the CPU and RAM. To mediate access to the remaining hardware,
Xen creates a domain known as dom0, which is empowered with
the ability to perform hardware access by mapping hardware
resources directly into that domain, creating a domain that is
uniquely privileged, but which still has significantly less privilege
than the virtual machine monitor (VMM) itself. In most use cases,
the hardware domain typically runs a standard Linux distribution,
such as Red Hat Enterprise Linux (RHEL) or Debian, which provides
the drivers used for hardware interfacing andmultiplexing software
used to route networking traffic to and from the guests.

3.3. Virtual machine exits

To provide an environment capable of executing user workloads
that include unmodified system software, hypervisor platforms
must be capable of interceding when a guest attempts to perform
operations that can impact the state of the real hardware. To enable
efficient intercession, processor virtualization technologies, such as
Intel's VT-x, provide hardware features that allow hypervisors to
assume control once a privileged operation is attempted. As such,
the hypervisor software has an opportunity to replace the relevant
operation with its own handlers, which often perform equivalent
operations to real hardware while limiting scope only to the
active VM.

In VT-x terminology, a virtual machine exit, or VM-exit, is a
point at which guest execution is paused and execution is returned
to the hypervisor, which can then opt to intercede on the guest's
behalf. To allow convenient world switches, VT-x based hypervisors
use a special-purpose region of memory known as a VM Control
Structure (VMCS), which is a data structure consisting of six logical
groups that handles hypervisor operations and state transitions
between the hypervisor and the guest.

During an exit (Ott, 2018):

1. The cause of the exit is recorded in the VM-exit information
fields.

2. The current processor state is saved in the guest-state area.
3. The model-specific registers (MSRs) are stored in the VM-exit

MSR-store area.
4. The processor state is loaded from the host-state area and

VM-exit controls.
5. The MSRs are loaded from the VM-exit MSR-load area.

Once the hypervisor completes its operations, a VM-entry will
be performed to transition control back to the guest. Since the
states are stored in main memory, the entire routine results in
significant overhead, due to generally low access rates versus a
processor cache. This is key to enabling detection of an introspec-
tive hypervisor.

3.4. Timers & timing methods

Modern x86-64 platforms contain a variety of timers and timing
methods. These include the x86 Timestamp Counter (TSC), the High
Precision Event Timer (HPET), and the Advanced Configuration and
Power Interface Power Management Timer (ACPI PMT). The first two
timers are of interest to us in this paper, and as such, will be
addressed here.

The TSC is a high precision timer on-board modern x86 systems
which is precise enough to measure individual processor clock
cycles. This precision makes it a typical timing source used for
analysis of timing-based side-channels, but it is important to note
that the TSC value is easily modified by hypervisors. Hypervisors
can easily intercede in requests for TSC values, and often do so for
legitimate purposes, such as the suspension and resumption of a
guest, or malicious reasons such as thwarting attempts at
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introspection detection. In the ECR trust model, where architectural
software is not fully trusted, the TSC is a less useful source of timing
information and must be used carefully.

Alternative timing sources include the x86 HPET, a timer which
is less precise, but is much more difficult to manipulate. As the
HPET is commonly used as a source of synchronization for multi-
media streams (Intel, 2018b) (wall time), manipulation of this timer
by the hypervisor will often cause immediate guest behavioral
issues; for example, failure of user interface animations or video
playback, and thus is often impractical for an adversary to manip-
ulate. Accordingly, timing sources derived from the HPET can be
more easily validated and thus providemore reliable bases for side-
channel analysis.

Another strategy for obtaining timing metrics is to execute
segments of code with known timing properties (Thompson).
These segments are especially hard to identify for modification or
emulation, as the halting problem makes the program analysis
required untenable. In multi-threaded environments, loops that
execute these segments can be used as timing sources by running a
loop in parallel with an operation of interest, and counting the
amount of iterations that complete. These segments represent an
interesting timing source, as they have few hardware dependencies
and are resilient to hypervisor manipulation.

Together, the latter two of these timing sources provide a rela-
tively strong basis for analyzing timing side-channels which is
simultaneously precise enough for many relevant measurements
and which is resilient to modification by privileged software.

3.5. Cache

Access to main memory is slow, and thus, modern CPUs attempt
to compensate for the shortfall in latency by storing data and in-
structions that are likely to be re-used in short order with a small
on-processor memory known as a cache. Typically, the organiza-
tion of a cache is hierarchical, with the L1 cache being small yet fast,
the L2 cache being larger and somewhat slower, and the L3 cache
being larger and slower than the previous two. The L3 cache is
typically inclusive (meaning that data stored in L1 and L2 are also
stored in L3), and shared between all processor cores on a multi-
core processor, whereas the L1 and L2 are dedicated to a specific
core. This configuration can of course vary, however, this is a
common arrangement of Intel's caches.

Typical x86 caches are set associative, thus physical memory is
divided into a number of regions called cache sets, within which
there exists 64-byte units called cache lines. The number of cache-
lines makes up the amount of 'ways' in which the cache is asso-
ciative. Again, only memory that is likely to be re-used in short
order is typically available in the cache, due to the lack of storage in
the cache versus main memory. (For x86-64 processors, the cache
is typically 32-kilobytes for both the level 1 instruction cache and
the level 1 data cache, 256-kilobytes for the level 2 cache, and 2-
megabytes or greater for the level 3 cache.)

Inevitably, all data that resides in the cache will be evicted. In
the case of x86-64, the cache replacement policy will result in a
given line being evicted only if other blocks from the samememory
region are accessed. With this in mind, eviction can be taken as
evidence that an access has occurred within a region. Thus, this
notion can serve as a basis for eviction-based side-channel attacks.

3.6. Cache side-channel attacks

Keeping in mind that a memory access will populate the
processor's cache-lines, it is possible to assess the likelihood that a
region of memory is being accessed. Moreover, given that the cache
is a shared and unprivileged architectural resource, it thus
represents a prime source of side-channel attacks. Given that
reading a piece of memory is markedly faster if it is represented
in the cache (since the processor does not need to fetch it from
memory), timing various operations on a specific portion of
memory will make it readily apparent whether that portion is
available in the cache. There are complications to this assertion,
such as the virtual address to physical address lookup, which must
be represented in the translation look-aside buffer (TLB) for mini-
mum timing, although such differences are generally observable.

There have been a significant number of attacks published on
this topic (Ge et al., 2016; Gruss et al., 2016; Disselkoen et al., 2017):

� Prime þ Probe: The attacker primes the cache by populating
cache-lines, waits for some time, then probing and timing access
to the same cache-line. If timing is lower, it is indicative that the
victim has touched that memory, as it was thus already cached.<
\item \emph{FlushþReload}: The attacker flushes by
shared virtual address, flushing a shared memory-line, waiting
for some time, then timing how long it takes to reload the line. A
lower timing indicates that the victim is likely to have touched
that memory-line. The attack allows targeting of a specific
memory-line, as opposed to just the cache set.

� Flush þ Reload: The attacker flushes by shared virtual address,
flushing a shared memory-line, waiting for some time, then
timing how long it takes to reload the line. A lower timing in-
dicates that the victim is likely to have touched that memory-
line. The attack allows targeting of a specific memory-line, as
opposed to just the cache set.

� Evict þ Time: The attacker waits for some time for the victim to
load some cache sets. The attacker can then evict any desired
memory-lines, and wait on the victim again. Access to a specific
line can be verified based on how long this eviction takes to run.

� Flush þ Flush: The attacker continuously flushes a shared
memory-line, timing the operation. The timing result is used to
determine whether the memory-line has been cached. A deter-
mination can be made since the victim must load the memory,
which would then take longer to flush by the attacker's contin-
uous operations.

� Prime þ Abort: Leverages features of Intel's Hardware Trans-
actional Memory (TSX) to avoid the use of timers to determine
cache accesses. The attacker opens a transaction, accesses the
memory address of interest, then waits for an abort. Once the
victim accesses the memory, a hardware callback is received
through TSX. This attack has a variety of benefits (aside from the
need to not utilize timers). It is also markedly faster, does not
require predefined intervals (the attacker can passively wait),
the timing inwhich the access occurred is precise (rather than the
previous more coarse-grained approaches), and there are fewer
false-positives. However, support for TSX may be limited due to
its somewhat more recent introduction and checkered roll-out.

It is worth noting that data being represented in the cache does
not necessarily indicate that it was accessed recently. The cached
location may represent temporal and spatial localities. A temporal
locality means that a referenced memory location that was recently
accessed is likely to be accessed again in the near future. A spatial
locality is the result of a memory location being accessed, thus
resulting in nearby memory locations being prepared for possible
accesses. With this in mind, it is sometimes better to look for evi-
dence of cache eviction rather than evidence of cache population.

3.7. LibVMI

LibVMI (LibVMI, 2018) is a C and Python library that grants the
ability to introspect on a VM's (Windows or Linux) execution on
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Xen or KVM. It supports register accesses, event trapping, memory
reading/writing, and other features. Full details of LibVMI are
encapsulated in its online documentation.

The LibVMI librarywas of interest in the ECReffort as it represents
a basis fromwhichmany real introspective hypervisors are built, and
thus is useful for characterization of malicious hypervisors.

4. Approach

4.1. Motivation

Despite the powerful benefits of virtualization, cloud platforms
introduce significant new attack vectors. Such an environment
allows an adversary that controls it to use its privileged position
to the detriment of the guest instances, should it so choose.
Generally, a guest has no choice but to implicitly trust that the
provider is behaving as expected, and is providing it with a secure
environment.

While the activities of a hypervisor are resistant to direct
detection, a hypervisor's operation is not entirely transparent to its
guests. A hardware-assisted hypervisor can provide guest software
an environment that is functionally equivalent to operation on
native hardware, but cannot fully hide its impact on system per-
formance or its utilization of shared, platform-controlled resources,
such as CPU caches (Quinn, 2012). These non-functional impacts
allow guests a small window with which to glean information
about their environment, and can be measured to distinguish
between native and virtualized environments for anti-reverse-
engineering or rootkit-detection purposes.

Several side-channel measurement techniques exist that mea-
sure the non-functional impact of operations that are likely to
require hypervisor intervention. If a hypervisor does intervene, it
must execute a handling routine from system memory; this execu-
tion causes a measurable increase in the number of cycles required
to handle the given operation, and often results in hypervisor
code and memory occupying space in the affected CPU's caches
(Rutkowska, 2004). Any increase in instruction execution time and/
or resultant cache artifacts can be observed from within the guest,
breaking the illusion of transparency and providing direct evidence
of the hypervisor's intervention. Beyond indicating the presence of
the hypervisor, this technique can be used to identify events that
result in hypervisor intervention, providing valuable hints as to the
hypervisor's behavior.

Existing works have successfully utilized side-channel
measurements to detect hypervisor impact, but leverage coarse
measurements that give an all-or-nothing indication as to whether
virtualization is being employed (Quinn, 2012). Measurements at
these granularities are of little use in the characterization of cloud
environments, where virtualization is a fundamental assumption.
To probe the limitations of characterization of cloud environments,
existing side-channel ideas needed to be refined to better target
hypervisor characterization.

4.2. Implementation

ECR consists of two predominant components:

1. A test framework, which emulates various forms of inappropriate
introspection and which can emulate malicious hypervisor
behaviors to assess our detection ability, and the monitoring
module.

2. A monitoring module, which resides in the deployed guest
instance, and is composed of a set of sensors that attempt to
detect a variety of malicious hypervisor behaviors, including
inappropriate introspection.
4.3. Monitoring module and sensors

The core challenge in detecting malicious architectural ele-
ments, such as a hypervisor performing inappropriate introspec-
tion, is that cloud tenants are typically significantly less privileged
than the suspect components. To compensate for this, ECR has
developed a monitoring module that runs entirely from within a
guest context, and which requires no additional privilege.

The enabling technology here are side-channel analysis sensors,
which use architectural properties to detect hypervisor behaviors.
We've developed four primary types of sensors:

1. Instruction intercession sensors, which detect when the hyper-
visor chooses' to intercede in instruction execution and use
intercession timings to characterize what the hypervisor is
doing in these cases.

2. Memory intercession sensors, which detect when the hypervisor
chooses to actively intercede in memory access operations. Access
timinghere is also telling:we can tellwhatmemory the hypervisor
chooses to intercede with and how long it takes to intercede.

3. Passive memory monitoring sensors, which utilize cache side-
channels to identify when hypervisors are inappropriately
accessing memory externally to a guest.

4. Non-temporal access sensors, which we've prototyped but did
not completely implement. The methods developed herein can
attempt to detect hypervisor accesses through e.g. non-caching
page mappings or using non-temporal instructions.

The core monitoring module itself combines everything from
these sensors into a single health report that indicates the behaviors
observed. This is primarily intended to assess how well the sensors
work for scientific purposes, but is a good base for developing a
runtime detection framework.

The monitoring module is a single kernel object which creates a
device that receives IOCTLs from userspace. This facilitates the
ability to have multiple capabilities that the user can specify as
needed. This interaction is facilitated by a Bash script, which has
been written with the minimal amount of package dependencies
that are reasonably necessary in a standard Linux environment to
allow for maximum portability.

4.4. Instruction intercession sensors

One of the most primitive, yet most commonly used methods to
maliciously affect a guest's operation is to actively intercede in the
execution of a variety of instructions using Intel's VT-x technology,
which allows the hypervisor to trap on certain instructions. Such a
technique is useful in both modifying the guest's execution
behavior, determining when a guest performs key operations (such
as switching between operations), and extraction of information. It
is often the case that a malicious hypervisor must hook certain
operations, such as \emph{MOV to CR3}, in order to install further
hooks (for instance, to hook interrupt handlers, identify when a
program is running, or to locate pages of interest). In particular,
\emph{MOV to CR3} is one of the most commonly hooked oper-
ations of an introspective hypervisor, as that is called each time a
context switch occurs and provides the location of the running
application's root page table, which contains the guest's physical
address of all relevant pages.

To identify these intercessions, the duration of instruction
executions can be timed. This timing is indicative of two items:

1. That intercession happened, since knowing that an instruction
took significantly longer, and thus that intercession occurred, is
valuable. This is because there are some operations for which
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there is effectively no reason a well-behaved hypervisor would
need to intercede. These ”red flags” can be used for a quick
identification of malicious behavior.

2. A 0signature’ of the handler code, with which we can get an idea of
roughly how much work the hypervisor is doing during an
intercession by timing the length of each intercession. These
give us both an indicator as to whether the behavior is suspi-
cious (is a hypervisor taking significantly longer than we'd
expect for a simple operation) and an indicator of whether a
particular piece of code is running.

In the latter case, we can likely predict a range of acceptable
timings given the relevant instruction.

To produce a reliable assessment, we need accurate timing
sources for which we are confident the hypervisor cannot inter-
pose, keeping in mind that many hypervisors already have simple
ways to hide the time they take to interpose (for example, by
modifying the read time-stamp counter (RDTSC) to only count
cycles actively executed within the guest). Accordingly, in addition
to common timing sources (RDTSC), we have developed a set of
timing sources [which were touched upon earlier] that are
extremely difficult to tamper with:

� Wall timing via the x86 HPET, for which modification would
result in anomalous behavior, such as interruptions to multi-
media, and would thus be quite apparent to an observer. In
order to facilitate this measurement, a kernel module will
execute instructions of interest many times in a loop so as to
smooth out results and deliver an average (running in the kernel
was more desirable than user space because it is then running at
a higher execution privilege). This set of loops is run multiple
times via a Bash script, to smooth out results. The timing mea-
surement is acquired via calls to the function getnstimeofday (),
which is obtaining timing metrics from the wall timer.

� Thread racing, in which segments of code with known timing
properties are executed in parallel with an instruction of inter-
est, counting the number of iterations that are completed for the
instruction. One thread runs the instruction in a loop, while the
other thread executes NOPs continuously. The NOP thread is
signaled to start and stop once the instruction starts and fin-
ishes, respectively. The amount of NOPs that have executed are
then logged. This operation is handled in the same way as wall
timing (that is, the instructions are looped many times, and
the Bash script loops these sets of loops to further smooth out
results). The ability of a hypervisor to monitor such activities is
impractical due to the very substantial overhead that would be
incurred for such an operation.

Using these methods, the sensor module evaluates execution
timing for a significant variety of instructions, and reports them
back in a table compromised of timing metrics that can be used to
identify inappropriate behavior. This information can be used both
to identify inappropriate introspection and to reason about the
targets of that introspection.

Of these instructions, we would take a particular interest in
RDTSC, MOV to CR3, RDRAND, and RDSEED. RDTSC is an interesting
case, as it may be frequently trapped for legitimate reasons, thus
obfuscating what the purpose of the hypervisor's activities truly
are. Manipulation of MOV to CR3 would permit the hypervisor to
modify the expected location of the page directory and page tables
for a given task. RDRAND and RDSEED are a less interesting case;
while trapping them would permit nullifying cryptography, a
hypervisor that can perform such a task can also just as likely read
the guest's memory directly.
4.5. Active memory intercession sensors

In addition to intercession on instruction execution, hypervisors
can choose to intercede when given memory pages are read or
written. By marking the hypervisor's virtual to physical mappings
(the Extended Page Tables (EPT)) to cause a VM-exit, a guest can be
configured to transparently trap to the hypervisor each time a given
memory address is accessed. In our experiments this capability was
facilitated by LibVMI.

Restricting page accesses gives the hypervisor the capability to
perform functionally-transparent modification of read/write/
execution values. When a trap is triggered, the hypervisor can
choose to emulate, swap pages, or even deny a given access rather
than allowing it to occur as expected.

Additionally, restricted page accesses can be used for observa-
tion of reads/writes/executes to a given page or page range. This is
particularly useful if the hypervisor is trying to extract information
about the guest, as the hypervisor may now use access patterns to
identify where data is and can be notified when it changes,
allowing trivial extraction.

Such intercessions can be identified in much the same way that
we'd identify instruction intercession: by timing memory accesses
and recording the results. For example, it's a red flag if intercessions
occur wherewe don't expect; additionally, we can get an idea of the
scope of the intercession by the amount of cycles that it takes to
handle the intercession. Moreover, the same timing restrictions
apply, and hence, we can use the same timing sources we devel-
oped for detecting instruction intercession.

This type of identification of instruction intercession gives a good
idea of what's being ”spied” on with a decent granularity, as the
hypervisor specifies intercession at a 4-kilobyte (page-sized) gran-
ularity. By walking through a range of pages and checking access
times, it is possible to identifywhich pages are beingmonitored. The
timing is, in addition, very substantial, especially when the world
switch is compared to a cache miss. There is little, if any, room to
question whether intercession has occurred in these cases.
4.6. Passive memory monitoring sensor

The two previous sections represent the most common and
significant forms of intercession; however, a hypervisor that desires
tominimize overhead or to be particularly stealthy can also use non-
intercessory methods to access guest memory. This is accomplished
by mapping a guest's physical pages into contexts other than the
guest. While this violates the guest's assumption that its memory
remains private, and allows other guests or the hypervisor to
directly access the contents of guest memory, it does not indicate
when the relevant memory has been accessed. As a result, these
passive (non-intercessory) methods do not have a direct timing
impact, so the method described in the past two sections won't
work, hence, we'll need to use a different side-channel.

As in the wall timing and thread racing timing techniques, the
time required to access a memory-line can be used to determine
whether there is a potential for introspection. The technique used
to achieve this is called \emph{FlushþReload}, which was
summarized earlier. A more verbose explanation of the steps
involved is as follows:

1. Thememory-line of interest is flushed from the cache by the spy
2. The spy waits for an ample period of time so as to allow the

victim to potentially access the region of memory
3. The same memory-line is reloaded by the spy, and the access is

timed
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If the victim did indeed access the memory region, the region
would have then been cached again. Thus, in the third step, the
time required for the spy's memory reload would be much shorter,
since the memory-line is already present. However, if the region
was not accessed, it would take markedly longer to reload.

The measurement itself is performed by leveraging LibVMI from
dom0 tomap a region of memory, then performing a Flushþ Reload
across several memory pages, some of which intersect with the
mapping. The deviation in timing for the page(s) of interest will be
indicative of introspection; specifically, the time required to access
the page will be reduced.

As in the previous section, a reliable and accurate source of
timing is required. For our purposes, we used tick timing (RDTSC)
due to its high accuracy. Since we can test RDTSC for instruction
intercession, it is then reasonable that once instruction vetting is
satisfactory, we can use RDTSC with a reduced concern that the
hypervisor is manipulating the result. It would be possible to fall
back on the HPET for these measurements, although this would
bring with it certain trade-offs in accuracy which have not been
evaluated in this research.

While this measurement, for the purpose of this work, is
conducted entirely using Flush þ Reload, which has a granularity of
the size of a cache line (64-bytes) it may be advisable to use
Primeþ Probe first, as its detection capability is equal to the size of a
cache slice (2 MiB), and use Flush þ Reload subsequently to hone in
on the desired memory region. The reason for this is that the
Flush þ Reload operation is computationally more expensive, due to
the aforementioned finer granularity.

4.7. Non-temporal access experimentation

Over the course of this effort, the stealthiest possible attacker
capabilities were hypothesized, and determined an attack case that
avoids all previous detection methods: non-temporal introspec-
tion. These attacks use the same principles as passive memory
mapping attacks, but avoid cache side-channel behavior. Such at-
tacks take their name from their use of Intel's features for accessing
non-temporal data, which is data that is unlikely to be used again,
and thus lacks temporal locality.

Two primary methods for detecting non-temporal access were
identified:

� Use of Intel's non-temporal, streaming, and vector instructions,
which bypass the cache entirely and thus do not leave a defined
side-channel. In experiments, these instructions all have cache-
coherence related side effects, which made them relatively
straightforward to detect. If a cache-line for a given page is
populated, and then a non-temporal instruction is used to read/
write it, the processor issues a cache flush to maintain coher-
ence. Thus, a side-channel exists that is similar to what was
described in the previous section.

� Use of Intel's Page Attribute Table (PAT) allows caching behavior
to be specified on a per-page basis. Accordingly, passive map-
pings can be set to be non-cache-interacting, defeating cache
side-channels. Using this technique would create a very stealthy
method for introspection. Over the course of this effort,
methods for detecting these accesses were evaluated, including
looking at average memory access latencies to detect relevant
bus contention, but provided only limited detection ability.
Further work in this area is necessary.

4.8. Methodology for analysis & classification of results

A variety of methods can be used to determine whether an in-
struction is exiting. For instance, since CPUID must exit in a
hypervisor environment, it may be desirable to use it as a baseline
against other instructions.

To demonstrate a rudimentary system for determining in-
struction intercession, the followingmethodology is used. A variety
of machines are tested, and a baseline of instructions which are not
exiting is created from the pooled mean and pooled variance. A
two-sample t-test is then used against each instruction's timing
result to determine how much they vary from the baseline. If the
t-values are sufficiently high, they can reasonably be flagged as
potentially exiting, or at least flagged as being of interest.

4.9. Test framework

To assess the effectiveness of our sensors, we need an interactive
test framework that will simulate each behavior of an introspective
hypervisor. As ECR is targeted towards establishing the limits of
detection, the test framework was designed to perform relatively
low-impact introspection; these tests were emphasized over
representative tests.

The test framework is comprised of the Xen Project as the
hypervisor (herein referred to as dom0). Upon installation, the
hypervisor then becomes the first component that runs after the
bootloader exits. Xen Project was selected due to its wide usage and
mature code base, and because it is an open source project. In order
to properly develop, analyze, and demonstrate introspection by a
hypervisor, Xen Project was modified to accept new hypercalls
which would toggle various types of introspection. This capability
can be interacted with from dom0. In addition to this, instructions
that Xen does not support for VM-exiting by default were also
implemented.

With these modifications, the test framework is capable of
simulating a wide variety of possible introspection techniques,
which thus enables efforts in determining if they could be detected
by the guest.

5. Results and discussion

The following sections describe the testing results of each
sensor. It is important to emphasize that we are seeking the limits
of detection; specifically, we seek to answer questions as to what
we can detect, at what granularity, whether there is a likelihood of
false positives, and so on.

5.1. Instruction intercession

As described earlier, many of the instructions that trap were
given support to do so as part of the ECR effort. To simulate the
smallest possible impact, the instructions trap and immediately
return, thus delivering the minimal possible reasonable timing
that would then lend itself towards understanding the limits of
detection. Additionally, we can gauge how much actual work the
hypervisor is performing upon intercession to some degree, how-
ever, more research would be required to have a full understanding
of the potential to reliably assess this.

Results of instruction timing findings are presented in two
separate batches, since some of the instructions have a much
higher timing disparity than others.

Figs. 1 and 2 encapsulates the majority of the instructions that
were measured (showing wall timing results and thread racing
results, respectively). It can be observed that there is a marked
timing difference in all trapped instructions for which the ECR test
framework facilitated such behavior. Several instructions e CPUID,
INVLPG, RDMSR, WBINVD, and WRMSR e must exit in all situations,
and thus only their exiting timing is shown here. XOR does not exit,
and is shown only as a very fast, non-exiting reference instruction.



Fig. 1. Wall timing results. Fig. 3. Wall timing results.
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Similarly, CLTS, MOV to CR0, and MOV to CR4 also cannot exit
(with the hypervisor's existing functionality), and are shown with
non-exiting timing as a reference.

Figs. 3 and 4 show the remaining instructions in a log-scale
format, which exhibited substantially higher clock timing results.
It is important to note that the MOVNTDQA and MOVNTDQ in-
structions are not exiting, but rather have their memory accesses
handled by the hypervisor's emulator, in the same manner as the
memory intercession testing, which is discussed later. INB and
OUTB do not support exiting, and are shown here for reference only.

There is some anomalous behavior with respect to the debug
registers (noted as MOV_DR in the figures). When exiting is
enabled, all of them showaminor increase in timing, but not nearly
as substantial as the other instructions. Moreover, only the first
register that is tested exhibits a somewhat noticeable increase in
timing versus the other registers that are tested. This behavior is
due to Xen only trapping on the very first access, then disabling
trapping thereafter.

It is clear that in most cases, the measurement results exhibited
consistent behavior with regards to very large spreads in timing
when being introspected upon and not (when it was possible to
Fig. 2. Thread racing results.
toggle such behavior). This lends itself to the conclusion that such
an avenue of analysis is viable for a cloud tenant to detect whether a
hypervisor is behaving in an atypical manner, since the difference
in an exiting instruction versus a non-exiting instruction, even in
the case where minimal introspection is performed (again, this was
a simple trap and immediate exit), was so large. However, a limi-
tation of this technique is that it does not necessarily lend itself
towards determining what an exiting instruction is doing, and to
what degree it is doing it. This holds especially true for instructions
that must exit by default, since they already exhibit the afore-
mentioned latency increases. Thus, to effectively assess them, it
would be necessary to understand what a benign exit would look
like. For example, an interesting case of this involves software
debugging exceptions involving single-stepping. Whenever a
debugger is active in Xen, it traps on this action automatically, so it
is not clear whether it is doing this for nefarious purposes or not.

5.2. Active memory intercession

As described earlier, a hypervisor can also utilize EPT to observe
guest memory access. This is useful when the hypervisor wants to be
Fig. 4. Thread racing results.



Fig. 5. Memory timing results. Fig. 6. Cache timing results.
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aware of guest access to particular regions ofmemorywith the option
of interfering with the outcome of the memory access, which, as an
example, can return different data or refuse to write to the address.

In Fig. 5, average results are shown across all tested systems for
timed access to multiple memory pages of interest. The page at
offset 4 has beenmapped by the hypervisor with EPTandmarked to
cause a VM-exit so the hypervisor may observe the memory before
the guest instruction completes. The guest observes a significant
increase in access time to page 4. As was described earlier, LibVMI is
used to perform an emulated response.

It is, therefore, clear that due to the large disparity in timing of
an interceded page versus a non-interceded page, it is unlikely that
a guest would observe a false positive.
5.3. Passive memory monitoring

As described earlier, it is expected that the Flush þ Reload
operation would complete more quickly when a specific 64-byte
cache-line is being mapped. This type of detection technique is
most useful in situations where it is desirable to detect passive
memory introspection by the hypervisor, which a hypervisor may
opt to use when it is desirable to be subtler. While the hypervisor
would not be able to easily change information on-the-fly as the
guest is using it (as in the active case), it could read and write
portions of it as needed, which in many cases, may very well be
quite adequate for its purposes.

In Fig. 6, average results are shown across all test systems for an
access to multiple memory locations within proximity to one
another. In this case, the guest allocated several pages of memory,
then performed a Flush þ Reload on several addresses within the
allocated range, as depicted by the offsets marked on the X-axis.
A program in dom0 utilized LibVMI to access 64-bytes of memory
at offset 0 � 80. The guest observes markedly lower timings in this
location compared to the other offsets, indicating that this location
has been accessed outside the guest (causing it to be unexpectedly
cached). This technique provides 64-byte granularity.
6. Future work

The ECR effort represents a promising first look into the ability of
a cloud tenant to characterize its environment, and provides a solid
foundation off of which detection instruments can be developed.
There are a number of avenues for follow-on work.
The ECR effort establishes the limits of detection and produces
simple sensors, but these sensors are not set up for a constantly-
running detection environment. The results should be generalized
into a continuous-detection framework and integrated into a real
cloud tenant.

The ECR effort used manual statistical analysis to identify
introspection, which would likely be better automated with a full
binary classifier. Future efforts could investigate the best classifiers
to identify malicious hypervisors.

We did not explore the space of proper responses to identified
introspection. Future efforts will need to develop a security model
for responding to identified introspection that limits the potential
for extraction of data from a guest.

Virtualization Exceptions (#VE) and VMFUNC, which are new
Intel virtualization extensions, are not addressed here. This is
because they are currently regarded as experimental in Xen, and
do not appear to be supported in Amazon's EC2 environment,
which is the primary environment that ECR was oriented towards.
These features are geared towards reducing overhead of VM-exits,
which would hamper ECR's techniques for detecting malicious
behavior.

Intel recently introduced EPT-based sub-page permissions
(Intel, 2018a), which allows memory protections to extend to a
128-byte granularity, rather than across an entire 4-kilobyte
memory page. This would entail a substantial increase in over-
head to determine whether a hypervisor is monitoring memory
regions.
7. Conclusion

This work demonstrates a reasonable methodology for deter-
mining the existence of an introspective hypervisor from within
the guest. The ability to reliably determine instruction interces-
sion, as well as active and passive memory intercession was dis-
cussed. Detecting instruction intercession for cases in which Intel
VT-x supports it, even while using the minimal possible inter-
cession techniques, is clearly evident, given the wide disparity in
timing between an interceded case versus a non-interceded case.
There is further work required to determine specifically how
feasible it is to determine the degree of intercession that the
hypervisor may be undertaking, and to propose a response to such
intercession.



T. Tuzel et al. / Digital Investigation 26 (2018) S98eS106S106
In the case of memory interaction, both active intercession and
passive monitoring detection cases have been demonstrated. These
techniques have been shown to work reliably, regardless of most
hypervisor attempts as subtlety, and could be expanded to actively
monitor for atypical behavior in a real-world environment. This
would likely involve determining memory regions of interest, and
creating a capability to monitor them by actively rotating through
each one, although the proper implementation technique would be
subject to some investigation. Moreover, to make a more concrete
determination as to whether introspection was occurring, it would
be necessary to minimize the possibility of another process
accessing the region, which could be done by ensuring that the
region is allocated across more than just one page, and to create a
situation inwhich one can be reasonably certain that the page is not
being accessed by another process.

Further complicating analysis could stem from a malicious
hypervisor attempting to use both active and passive memory
introspection techniques. This would lead to an interesting situa-
tion, because the result of the activities of one form of introspection
would increase latency, while the other would decrease latency, as
discussed earlier. The result could lead to obfuscated timings.

This research haswide applications when determiningmalicious
behavior in a cloud environment. Moreover, it serves to establish
limitations of this type of detection, showing that certain types of
introspection cannot reasonably be conducted without much more
serious efforts, or without major performance implications.
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